We study band alignment in wurtzite/zinc-blende polytype InAs heterostructured nanowires using temperature-dependent resonance Raman measurements. Nanowires having two different wurtzite fractions are investigated. Using visible excitation wavelengths in resonance Raman measurements, we probe the electronic band alignment of these semiconductor nanowires near a high-symmetry point of the Brillouin zone (E1 gap). The strain in the crystal structure, as revealed from the shift of the phonon mode, explains the observed band alignment at the wurtzite/zinc-blende interface. Our experimental results are further supported by electronic-structure calculations for such periodic heterostructured interface.
Strain-induced band alignment in wurtzite/zinc-blende InAs heterostructured nanowires
Ercolani D.;Sorba L.;
2015
Abstract
We study band alignment in wurtzite/zinc-blende polytype InAs heterostructured nanowires using temperature-dependent resonance Raman measurements. Nanowires having two different wurtzite fractions are investigated. Using visible excitation wavelengths in resonance Raman measurements, we probe the electronic band alignment of these semiconductor nanowires near a high-symmetry point of the Brillouin zone (E1 gap). The strain in the crystal structure, as revealed from the shift of the phonon mode, explains the observed band alignment at the wurtzite/zinc-blende interface. Our experimental results are further supported by electronic-structure calculations for such periodic heterostructured interface.File | Dimensione | Formato | |
---|---|---|---|
Panda2015-VR-strain induced band alignment in WZ-ZB InAs heterostructured NWS-PhysRevB.92.205302.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.