Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell. © 2012 Elsevier Inc.

OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus Oidiodendron maius, confer zinc tolerance in yeast

Abbà Simona;Daghino S.;Martino E.;Vallino M.;Perotto S.;
2013

Abstract

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell. © 2012 Elsevier Inc.
2013
Istituto per la Protezione Sostenibile delle Piante - IPSP
Cation diffusion facilitator
Iron permease
Mycorrhizal fungi
Oidiodendron maius
Zinc tolerance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact