Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the Amaranthus retroflexus biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, Sorghum halepense, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox, corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.

3D structure of acetolactate synthase explains why the Asp-376-Glu point mutation does not give the same resistance level to different imidazolinone herbicides

Panozzo, Silvia
;
Scarabel, Laura;Milani, Andrea
2024

Abstract

Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the Amaranthus retroflexus biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, Sorghum halepense, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox, corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.
2024
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Legnaro (PD)
Herbicide resistance
Redroot pigweed
Johnsongrass
Imidazolinones
Asp-376-Glu
ALS enzyme structure
File in questo prodotto:
File Dimensione Formato  
Porri, 2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact