Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles' morphology on the stabilization of catalytically highly active Pt-OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst' s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.

Effect of Pt Nanoparticle Morphology on the Aerobic Oxidation of Ethylene Glycol to Glycolic Acid in Water

Oberhauser, Werner
;
Evangelisti, Claudio
;
Nguyen, Xuan Trung;Filippi, Jonathan;Poggini, Lorenzo;Capozzoli, Laura;Manca, Gabriele;
2024

Abstract

Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles' morphology on the stabilization of catalytically highly active Pt-OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst' s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
carbon-supported platinum nanoparticles, solvation, aerobic oxidation, ethylene glycol, glycolic acid, water phase
File in questo prodotto:
File Dimensione Formato  
Inorg. Chem. 2024, 63, 48, 22912–22922.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.1 MB
Formato Adobe PDF
6.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
AAM-Inorg. Chem. 2024.pdf

embargo fino al 18/11/2025

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.4c03970.”
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ic4c03970_si_001.pdf

accesso aperto

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 697.36 kB
Formato Adobe PDF
697.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact