Rural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007–2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases. On average, Italy's GHG and particulate matter emissions were 2621 Gg yr−1, ranging from a minimum of 772 Gg yr−1 in 2013 to a maximum of 7020 Gg yr−1 in 2007. Emissions from fire disturbances in broadleaf forests, shrublands, and agricultural fuel types account for about 76 % of the total. Results were compared with global and national inventories and showed good agreement, especially considering CO2 and particulate matter. The approach of this study added confidence in emission estimates, and the results can be utilized in decision support systems to address air quality management and fire impact mitigation policies.

Estimating annual GHG and particulate matter emissions from rural and forest fires based on an integrated modelling approach

Scarpa C.
Primo
;
Bacciu V.
;
Salis M.;
2024

Abstract

Rural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007–2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases. On average, Italy's GHG and particulate matter emissions were 2621 Gg yr−1, ranging from a minimum of 772 Gg yr−1 in 2013 to a maximum of 7020 Gg yr−1 in 2007. Emissions from fire disturbances in broadleaf forests, shrublands, and agricultural fuel types account for about 76 % of the total. Results were compared with global and national inventories and showed good agreement, especially considering CO2 and particulate matter. The approach of this study added confidence in emission estimates, and the results can be utilized in decision support systems to address air quality management and fire impact mitigation policies.
2024
Istituto per la BioEconomia - IBE
Burning efficiency
Fire emission
Fuel consumption
Greenhouse gas and particulate matter
Integrated approach
File in questo prodotto:
File Dimensione Formato  
Scarpa et al_2024_STOTEN.pdf

accesso aperto

Licenza: Creative commons
Dimensione 5.07 MB
Formato Adobe PDF
5.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact