Great interest revolves around the development of new strategies to efficiently store and manipulate quantum information in a robust and decoherence-free fashion. Several proposals have been put forward to encode information into qubits that are simultaneously insensitive to relaxation and to dephasing processes. Among all, given their versatility and high-degree of control, superconducting qubits have been largely investigated in this direction. Here, we present a survey on the basic concepts and ideas behind the implementation of novel superconducting circuits with intrinsic protection against decoherence at a hardware level. In particular, the main focus is on multi-mode superconducting circuits, the paradigmatic example being the so-called 0 − π circuit. We report on their working principle and possible physical implementations based on conventional Josephson elements, presenting recent experimental realizations, discussing both fabrication methods and characterizations.
Multi-mode architectures for noise-resilient superconducting qubits
Matteo Carrega
2022
Abstract
Great interest revolves around the development of new strategies to efficiently store and manipulate quantum information in a robust and decoherence-free fashion. Several proposals have been put forward to encode information into qubits that are simultaneously insensitive to relaxation and to dephasing processes. Among all, given their versatility and high-degree of control, superconducting qubits have been largely investigated in this direction. Here, we present a survey on the basic concepts and ideas behind the implementation of novel superconducting circuits with intrinsic protection against decoherence at a hardware level. In particular, the main focus is on multi-mode superconducting circuits, the paradigmatic example being the so-called 0 − π circuit. We report on their working principle and possible physical implementations based on conventional Josephson elements, presenting recent experimental realizations, discussing both fabrication methods and characterizations.| File | Dimensione | Formato | |
|---|---|---|---|
|
Calzona_2023_Supercond._Sci._Technol._36_023001.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


