The presence of a liquid electrolyte in dye-sensitized solar cells (DSSCs) is known to limit the time stability of these devices due to leakage and evaporation phenomena. To overcome this issue, gel-state electrolytes may represent a good solution in order to maintain stability and good performances, albeit at lower costs. In the present work, two different kinds of gel-electrolytes, based on poly (methyl methacrylate) (PMMA) and nanoclay agents, were investigated in DSSC-devices sensitized using β-substituted Zn-porphyrins (namely ZnPC4 and ZnPC12) with enveloping alkoxy chains of different lengths, able to produce a coverage of the photoanode surface. The highest power conversion efficiency (PCE) values equal to 1.06 ± 0.04% and 1.55 ± 0.26% were obtained for ZnPC12 (with longer alkoxy chains) with PMMA- and nanoclay-based electrolytes respectively. The properties of the photoanode/electrolyte interface as well as the influence of the gelling agents on the final properties of the obtained devices were thoroughly characterized.
An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes
Sangiorgi N.
Primo
;Sangiorgi A.;Sanson A.;Orbelli Biroli A.
Ultimo
2023
Abstract
The presence of a liquid electrolyte in dye-sensitized solar cells (DSSCs) is known to limit the time stability of these devices due to leakage and evaporation phenomena. To overcome this issue, gel-state electrolytes may represent a good solution in order to maintain stability and good performances, albeit at lower costs. In the present work, two different kinds of gel-electrolytes, based on poly (methyl methacrylate) (PMMA) and nanoclay agents, were investigated in DSSC-devices sensitized using β-substituted Zn-porphyrins (namely ZnPC4 and ZnPC12) with enveloping alkoxy chains of different lengths, able to produce a coverage of the photoanode surface. The highest power conversion efficiency (PCE) values equal to 1.06 ± 0.04% and 1.55 ± 0.26% were obtained for ZnPC12 (with longer alkoxy chains) with PMMA- and nanoclay-based electrolytes respectively. The properties of the photoanode/electrolyte interface as well as the influence of the gelling agents on the final properties of the obtained devices were thoroughly characterized.File | Dimensione | Formato | |
---|---|---|---|
processes-11-00463-v2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.