This study addresses the dependence of the rate and pattern of pyrolysis of solid fuels from the oxidizing versus inert nature of the gaseous atmosphere. A selection of four solid fuels is considered in the study, namely two plastics (polyethylene and polyethylene terephthalate), one lignocellulosic material (Robinia Pseudoacacia) and a South African bituminous coal. Fuels are pyrolyzed in a thermogravimetric apparatus at different heating rates, under inert conditions or in the presence of oxygen at different concentration. Results indicate that the action exerted by oxygen during pyrolysis depends on the nature of the fuel and on the process conditions such as heating rate and oxygen concentration. Larger heating rates and larger oxygen concentration may indeed emphasize differences between inert and oxidative pyrolysis. Further analysis is directed to check the adequacy of a power low kinetic expression to describe the dependence of the rate of oxidative pyrolysis from the level of oxygen concentration. © 2004 Elsevier B.V. All rights reserved.
Oxidative pyrolysis of solid fuels
Senneca Osvalda;Chirone Riccardo;
2004
Abstract
This study addresses the dependence of the rate and pattern of pyrolysis of solid fuels from the oxidizing versus inert nature of the gaseous atmosphere. A selection of four solid fuels is considered in the study, namely two plastics (polyethylene and polyethylene terephthalate), one lignocellulosic material (Robinia Pseudoacacia) and a South African bituminous coal. Fuels are pyrolyzed in a thermogravimetric apparatus at different heating rates, under inert conditions or in the presence of oxygen at different concentration. Results indicate that the action exerted by oxygen during pyrolysis depends on the nature of the fuel and on the process conditions such as heating rate and oxygen concentration. Larger heating rates and larger oxygen concentration may indeed emphasize differences between inert and oxidative pyrolysis. Further analysis is directed to check the adequacy of a power low kinetic expression to describe the dependence of the rate of oxidative pyrolysis from the level of oxygen concentration. © 2004 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.