A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe 3O 4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe 3O 4 and FeHA nanoparticles generally improves the modulus and the yield stress of the fibres if compared to those of neat PCL, as well as the modulus of the scaffolds. Micro-computed tomography has confirmed the possibility to design morphologically-controlled structures with a fully interconnected pore network. Magnetisation analyses performed at 378C have highlighted M-H curves that are not hysteretic; values of saturation magnetisation (M s) of about 3.9 emu/g and 0.2 emu/g have been evaluated for PCL/Fe 3O 4 and PCL/FeHA scaffolds, respectively. Furthermore, results from confocal laser scanning microscopy (CLSM) carried out on cell-scaffold constructs have evidenced that human mesenchymal stem cells (hMSCs) better adhered and were well spread on the PCL/Fe 3O 4 and PCL/FeHA nanocomposite scaffolds in comparison with the PCL structures. © 2011 Taylor & Francis.

A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: Preliminary study: A basic approach toward the design of 3D rapid prototyped magnetic scaffolds for hard-tissue regeneration is presented and validated in this paper

de Santis R.;Gloria A.;Russo T.;D'Amora U.;Zeppetelli S.;Tampieri A.;Ambrosio L.
2011

Abstract

A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe 3O 4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe 3O 4 and FeHA nanoparticles generally improves the modulus and the yield stress of the fibres if compared to those of neat PCL, as well as the modulus of the scaffolds. Micro-computed tomography has confirmed the possibility to design morphologically-controlled structures with a fully interconnected pore network. Magnetisation analyses performed at 378C have highlighted M-H curves that are not hysteretic; values of saturation magnetisation (M s) of about 3.9 emu/g and 0.2 emu/g have been evaluated for PCL/Fe 3O 4 and PCL/FeHA scaffolds, respectively. Furthermore, results from confocal laser scanning microscopy (CLSM) carried out on cell-scaffold constructs have evidenced that human mesenchymal stem cells (hMSCs) better adhered and were well spread on the PCL/Fe 3O 4 and PCL/FeHA nanocomposite scaffolds in comparison with the PCL structures. © 2011 Taylor & Francis.
2011
Istituto per i Polimeri, Compositi e Biomateriali - IPCB - Sede Secondaria di Napoli (Portici)
Biological and mechanical analyses
Hard tissue regeneration
Magnetic scaffold
Nanocomposite
Rapid prototyping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? ND
social impact