: The process of developing superconducting materials for large scale applications is mainly oriented to optimize flux pinning and the current carrying capability. A powerful approach to investigate pinning properties is to combine high resolution imaging with transport measurements as a function of the magnetic field orientation, supported by a pinning modelling. We carry out Transmission Electron Microscopy, Electron Energy Loss Spectroscopy and critical current measurements in fields up to 16 T varying the angle between the field and c-axis of Fe(Se,Te) epitaxial thin films deposited on CaF2 substrates. We find evidence of nanoscale domains with different Te:Se stoichiometry and/or rotated and tilted axes, as well as of lattice distortions and two-dimensional defects at the grain boundaries. These elongated domains are tens of nm in size along the in-plane axes. We establish a correlation between these observed microstructural features and the pinning properties, specifically strongly enhanced pinning for the magnetic field oriented in-plane and pinning emerging at higher fields for out-of-plane direction. These features can be accounted for within a model where pinning centers are local variations of the critical temperature and local variations of the mean free path, respectively. The identification of all these growth induced defects acting as effective pinning centers may provide useful information for the optimization of Fe(Se,Te) coated conductors.

Nanoscale analysis of superconducting Fe(Se,Te) epitaxial thin films and relationship with pinning properties

Scuderi, Mario;Pallecchi, Ilaria;Leo, Antonio;Nigro, Angela;Grimaldi, Gaia;Ferdeghini, Carlo;Spinella, Corrado;Braccini, Valeria
2021

Abstract

: The process of developing superconducting materials for large scale applications is mainly oriented to optimize flux pinning and the current carrying capability. A powerful approach to investigate pinning properties is to combine high resolution imaging with transport measurements as a function of the magnetic field orientation, supported by a pinning modelling. We carry out Transmission Electron Microscopy, Electron Energy Loss Spectroscopy and critical current measurements in fields up to 16 T varying the angle between the field and c-axis of Fe(Se,Te) epitaxial thin films deposited on CaF2 substrates. We find evidence of nanoscale domains with different Te:Se stoichiometry and/or rotated and tilted axes, as well as of lattice distortions and two-dimensional defects at the grain boundaries. These elongated domains are tens of nm in size along the in-plane axes. We establish a correlation between these observed microstructural features and the pinning properties, specifically strongly enhanced pinning for the magnetic field oriented in-plane and pinning emerging at higher fields for out-of-plane direction. These features can be accounted for within a model where pinning centers are local variations of the critical temperature and local variations of the mean free path, respectively. The identification of all these growth induced defects acting as effective pinning centers may provide useful information for the optimization of Fe(Se,Te) coated conductors.
2021
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria UniCatania
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Fisciano
Nanostructure, iron-based chalchogenides, pinning
File in questo prodotto:
File Dimensione Formato  
s41598-021-99574-5.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact