While instability in aqueous environment has long impeded employment of metal halide perovskites for heterogeneous photocatalysis, recent reports have shown that some particular tin halide perovskites (THPs) can be water-stable and active in photocatalytic hydrogen production. To unravel the mechanistic details underlying the photocatalytic activity of THPs, we compare the reactivity of the water-stable and active DMASnBr3 (DMA = dimethylammonium) perovskite against prototypical MASnI3 and MASnBr3 compounds (MA = methylammonium), employing advanced electronic–structure calculations. We find that the binding energy of electron polarons at the surface of THPs, driven by the conduction band energetics, is cardinal for photocatalytic hydrogen reduction. In this framework, the interplay between the A-site cation and halogen is found to play a key role in defining the photoreactivity of the material by tuning the perovskite electronic energy levels. Our study, by elucidating the key steps of the reaction, may assist in development of more stable and efficient materials for photocatalytic hydrogen reduction.

Reaction Mechanism of Photocatalytic Hydrogen Production at Water/Tin Halide Perovskite Interfaces

Ricciarelli D.;Kaiser W.;Mosconi E.;Malavasi L.;De Angelis F.
2022

Abstract

While instability in aqueous environment has long impeded employment of metal halide perovskites for heterogeneous photocatalysis, recent reports have shown that some particular tin halide perovskites (THPs) can be water-stable and active in photocatalytic hydrogen production. To unravel the mechanistic details underlying the photocatalytic activity of THPs, we compare the reactivity of the water-stable and active DMASnBr3 (DMA = dimethylammonium) perovskite against prototypical MASnI3 and MASnBr3 compounds (MA = methylammonium), employing advanced electronic–structure calculations. We find that the binding energy of electron polarons at the surface of THPs, driven by the conduction band energetics, is cardinal for photocatalytic hydrogen reduction. In this framework, the interplay between the A-site cation and halogen is found to play a key role in defining the photoreactivity of the material by tuning the perovskite electronic energy levels. Our study, by elucidating the key steps of the reaction, may assist in development of more stable and efficient materials for photocatalytic hydrogen reduction.
2022
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Perugia
energy, hydrogen, materials, perovskites, polarons
File in questo prodotto:
File Dimensione Formato  
456.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact