: There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.

Air- and water-stable and photocatalytically active germanium-based 2D perovskites by organic spacer engineering

Tedesco C.;Colella S.;Milella A.;Listorti A.;Mosconi E.;Ricciarelli D.;Saba M.;De Angelis F.;Malavasi L.
2023

Abstract

: There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.
2023
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Perugia
Istituto di Nanotecnologia - NANOTEC
computational modeling
germanium perovskites
hydrogen generation
metal halide perovskites
photocatalysis
File in questo prodotto:
File Dimensione Formato  
479.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact