: Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.
Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder
Tanzi, Luca;Modugno, Giovanni;D'Errico, Chiara
Ultimo
2024
Abstract
: Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.133.123401.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.