COSINUS is a new cryogenic observatory for rare event searches located in the Laboratori Nazionali del Gran Sasso in Italy. COSINUS's first goal is to clarify whether the signal detected by the DAMA/LIBRA experiment originates from dark matter particle interactions or has a different nature. To this aim, sodium iodide (NaI) cryogenic scintillating calorimeters read out by transition edge sensors (TESs) are developed. To preserve the NaI crystal from the TES fabrication process, COSINUS implemented a novel design, the remoTES, where the TES is deposited on a separate wafer and coupled to the absorber through a Au-bonding wire and a Au-phonon collector. This design has reached baseline resolutions below 100 eV for Si, 200 eV for TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_2$$\end{document} and 400 eV for NaI absorbers. These results show that the remoTES not only brings COSINUS close to its performance goal of 1 keV energy threshold, but also offers the possibility to employ delicate crystals previously excluded for cryogenic applications as absorbers and to avoid the exposure of the absorbers to the TES fabrication process. It therefore extends the choice of target materials of the rare event searches using TES. In this work, we will provide a detailed description of the remoTES design and present the results of the latest prototypes.

Description and Performance of the COSINUS remoTES Design

Profeta G.;Tresca C.;
2024

Abstract

COSINUS is a new cryogenic observatory for rare event searches located in the Laboratori Nazionali del Gran Sasso in Italy. COSINUS's first goal is to clarify whether the signal detected by the DAMA/LIBRA experiment originates from dark matter particle interactions or has a different nature. To this aim, sodium iodide (NaI) cryogenic scintillating calorimeters read out by transition edge sensors (TESs) are developed. To preserve the NaI crystal from the TES fabrication process, COSINUS implemented a novel design, the remoTES, where the TES is deposited on a separate wafer and coupled to the absorber through a Au-bonding wire and a Au-phonon collector. This design has reached baseline resolutions below 100 eV for Si, 200 eV for TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_2$$\end{document} and 400 eV for NaI absorbers. These results show that the remoTES not only brings COSINUS close to its performance goal of 1 keV energy threshold, but also offers the possibility to employ delicate crystals previously excluded for cryogenic applications as absorbers and to avoid the exposure of the absorbers to the TES fabrication process. It therefore extends the choice of target materials of the rare event searches using TES. In this work, we will provide a detailed description of the remoTES design and present the results of the latest prototypes.
2024
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria L'Aquila
TES
Rare-event-search
Calorimeters
Scintillation
NaI
Dark-matter
File in questo prodotto:
File Dimensione Formato  
2024_s10909-024-03201-2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact