The surface properties of saponin and saponin-chitosan mixtures were analysed as a function of their bulk mixing ratio using vibrational sum-frequency generation (SFG), surface tensiometry and dilational rheology measurements. Our experiments show that saponin-chitosan mixtures present some remarkable properties, such as a strong amphiphilicity of the saponin and high dilational viscoelasticity. We believe this points to the presence of chitosan in the adsorption layer, despite its complete lack of surface activity. We explain this phenomenon by electrostatic interactions between the saponin as an anionic surfactant and chitosan as a polycation, leading to surface-active saponin-chitosan complexes and aggregates. Analysing the SFG intensity of the O-H stretching bands from interfacial water molecules, we found that in the case of pH 3.4 for a mixture consisting of 0.1 g/L saponin and 0.001 g/L chitosan, the adsorption layer was electrically neutral. This conclusion from SFG spectra is corroborated by results from surface tensiometry showing a significant reduction in surface tension and effects on the dilational surface elasticity strictly at saponin/chitosan ratios, where SFG spectra indicate zero net charge at the air-water interface.

Surface Properties of Saponin—Chitosan Mixtures

Santini, Eva;Ravera, Francesca;Liggieri, Libero;
2022

Abstract

The surface properties of saponin and saponin-chitosan mixtures were analysed as a function of their bulk mixing ratio using vibrational sum-frequency generation (SFG), surface tensiometry and dilational rheology measurements. Our experiments show that saponin-chitosan mixtures present some remarkable properties, such as a strong amphiphilicity of the saponin and high dilational viscoelasticity. We believe this points to the presence of chitosan in the adsorption layer, despite its complete lack of surface activity. We explain this phenomenon by electrostatic interactions between the saponin as an anionic surfactant and chitosan as a polycation, leading to surface-active saponin-chitosan complexes and aggregates. Analysing the SFG intensity of the O-H stretching bands from interfacial water molecules, we found that in the case of pH 3.4 for a mixture consisting of 0.1 g/L saponin and 0.001 g/L chitosan, the adsorption layer was electrically neutral. This conclusion from SFG spectra is corroborated by results from surface tensiometry showing a significant reduction in surface tension and effects on the dilational surface elasticity strictly at saponin/chitosan ratios, where SFG spectra indicate zero net charge at the air-water interface.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Genova
biodegradable surfactants
chitosan
saponin
saponin—chitosan interactions
bio-compatible systems
File in questo prodotto:
File Dimensione Formato  
molecules-27-07505-v3 (2).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact