For the first time, we analyzed the degradation as a function of the oxide aperture in 845 nm VCSELs designed for silicon photonics (SiPh) applications. First, we evaluated the optical degradation of the devices by collecting EL images during a constant current stress. The experimental results showed an increased spreading of the optical beam of the VCSEL with increasing ageing time. Based on numerical simulations, we demonstrated that the electrical degradation (increase in series resistance) is responsible for a larger current spreading which, in turn, increases the FWHM (full width half maximum) of the optical beam. We further evaluated the series resistance variation by aging four lasers with different oxide apertures. The results of this set of experiments showed that the electrical degradation is stronger as the oxide aperture is smaller, and mostly depends on the contribution of the top DBR resistance. Thanks to our analysis we proved that the use of a larger aperture can result in a better device reliability.

Impact of the Oxide Aperture Width on the Degradation of 845 nm VCSELs for Silicon Photonics

Francesca Rossi;Laura Lazzarini;
2025

Abstract

For the first time, we analyzed the degradation as a function of the oxide aperture in 845 nm VCSELs designed for silicon photonics (SiPh) applications. First, we evaluated the optical degradation of the devices by collecting EL images during a constant current stress. The experimental results showed an increased spreading of the optical beam of the VCSEL with increasing ageing time. Based on numerical simulations, we demonstrated that the electrical degradation (increase in series resistance) is responsible for a larger current spreading which, in turn, increases the FWHM (full width half maximum) of the optical beam. We further evaluated the series resistance variation by aging four lasers with different oxide apertures. The results of this set of experiments showed that the electrical degradation is stronger as the oxide aperture is smaller, and mostly depends on the contribution of the top DBR resistance. Thanks to our analysis we proved that the use of a larger aperture can result in a better device reliability.
2025
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Vertical cavity surface emitting lasers, Degradation, Stress, Apertures, Optical beams, Resistance, Optical imaging
File in questo prodotto:
File Dimensione Formato  
Impact of the Oxide Aperture Width on the Degradation of 845 Nm VCSELs for Silicon Photonics.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact