Thin organic films are widely used in sensors, solar cells, and optical devices due to their intense absorption in the visible/near-infrared (IR) region. Shifting, quenching, or reshaping of some spectral features can be achieved by chemical functionalization of the molecules, whereas an anisotropic fingerprint due to preferential molecular alignment can be induced via a proper design and/or preparation of the substrate. Recently, we investigated the optical response of thin films of porphycene to acidification. With respect to the well-known and closely related tetraphenyl porphyrin, porphycene has the clear advantage of being optically active in the full visible range, and this makes visible by naked eye the immediate change of the film from brilliant blue-turquoise to green when exposed to HCl vapors. In this work, by exploiting a homemade reflectance anisotropy spectroscopy (RAS) apparatus, we explore possible optical anisotropies in the visible spectral range of porphycene films and relate them to the film morphology analyzed by atomic force microscopy (AFM).

Porphycene Films Grown on Highly Oriented Pyrolytic Graphite: Unveiling Structure{\textendash}Property Relationship through Combined Reflectance Anisotropy Spectroscopy and Atomic Force Microscopy Investigations

Marta Penconi
Primo
;
Alberto Bossi
Co-ultimo
;
2021

Abstract

Thin organic films are widely used in sensors, solar cells, and optical devices due to their intense absorption in the visible/near-infrared (IR) region. Shifting, quenching, or reshaping of some spectral features can be achieved by chemical functionalization of the molecules, whereas an anisotropic fingerprint due to preferential molecular alignment can be induced via a proper design and/or preparation of the substrate. Recently, we investigated the optical response of thin films of porphycene to acidification. With respect to the well-known and closely related tetraphenyl porphyrin, porphycene has the clear advantage of being optically active in the full visible range, and this makes visible by naked eye the immediate change of the film from brilliant blue-turquoise to green when exposed to HCl vapors. In this work, by exploiting a homemade reflectance anisotropy spectroscopy (RAS) apparatus, we explore possible optical anisotropies in the visible spectral range of porphycene films and relate them to the film morphology analyzed by atomic force microscopy (AFM).
2021
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
porphycene
thin organic films
RAS
AFM
File in questo prodotto:
File Dimensione Formato  
proceedings_2021 porphycene-56-00044-1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact