We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.

Predicting the failure of component X in the Scania dataset with graph neural networks

Metta C.;
2024

Abstract

We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
9783031585555
9783031585531
Predictive Maintenance, Graph Neural Networks, Visibility Graphs
File in questo prodotto:
File Dimensione Formato  
Component_X_paper.pdf

solo utenti autorizzati

Descrizione: Predicting the Failure of Component X in the Scania Dataset with Graph Neural Networks
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 270.77 kB
Formato Adobe PDF
270.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact