American cutaneous leishmaniasis is a disease caused by protozoa of the genus Leishmania. Currently, meglumine antimoniate is the first-choice treatment for the disease. The limited efficacy and high toxicity of the drug results in the necessity to search for new active principles. Nanotechnology is gaining importance in the field, since it can provide better efficacy and lower toxicity of the drugs. The present study aimed to synthesize, characterize, and evaluate the in vitro leishmanicidal and antileukemic activity of bismuth nanoparticles (BiNPs). Promastigotes and amastigotes of L. (V.) guyanensis and L. (L.) amazonensis were exposed to BiNPs. The efficacy of the nanoparticles was determined by measurement of the parasite viability and the percentage of infected cells, while the cytotoxicity was characterized by the colorimetry. BiNPs did not induce cytotoxicity in murine peritoneal macrophages and showed better efficacy in inhibiting promastigotes (IC50 < 0.46 nM) and amastigotes of L. (L.) amazonensis. This is the first report on the leishmanicidal activity of Bi-based materials against L. (V.) guayanensis. BiNPs demonstrated significant cytotoxic activity against K562 and HL60 cells at all evaluated concentrations. While the nanoparticles also showed some cytotoxicity towards non-cancerous Vero cells, the effect was much lower compared to that on cancer cells. Treatment with BiNPs also had a significant effect on inhibiting and reducing colony formation in HL60 cells. These results indicate that bismuth nanoparticles have the potential for an inhibitory effect on the clonal expansion of cancer cells.

A Second Wind for Inorganic APIs: Leishmanicidal and Antileukemic Activity of Hydrated Bismuth Oxide Nanoparticles

Cerruti P.;Del Barone M. C.;
2024

Abstract

American cutaneous leishmaniasis is a disease caused by protozoa of the genus Leishmania. Currently, meglumine antimoniate is the first-choice treatment for the disease. The limited efficacy and high toxicity of the drug results in the necessity to search for new active principles. Nanotechnology is gaining importance in the field, since it can provide better efficacy and lower toxicity of the drugs. The present study aimed to synthesize, characterize, and evaluate the in vitro leishmanicidal and antileukemic activity of bismuth nanoparticles (BiNPs). Promastigotes and amastigotes of L. (V.) guyanensis and L. (L.) amazonensis were exposed to BiNPs. The efficacy of the nanoparticles was determined by measurement of the parasite viability and the percentage of infected cells, while the cytotoxicity was characterized by the colorimetry. BiNPs did not induce cytotoxicity in murine peritoneal macrophages and showed better efficacy in inhibiting promastigotes (IC50 < 0.46 nM) and amastigotes of L. (L.) amazonensis. This is the first report on the leishmanicidal activity of Bi-based materials against L. (V.) guayanensis. BiNPs demonstrated significant cytotoxic activity against K562 and HL60 cells at all evaluated concentrations. While the nanoparticles also showed some cytotoxicity towards non-cancerous Vero cells, the effect was much lower compared to that on cancer cells. Treatment with BiNPs also had a significant effect on inhibiting and reducing colony formation in HL60 cells. These results indicate that bismuth nanoparticles have the potential for an inhibitory effect on the clonal expansion of cancer cells.
2024
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
anticancer
bismuth
leishmaniasis
myeloid leukemia
nanoparticles
File in questo prodotto:
File Dimensione Formato  
pharmaceutics-16-00874.pdf

accesso aperto

Descrizione: file
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact