Surface-enhanced Raman spectroscopy (SERS) has garnered increasing attention for its ability to detect molecules even at low concentrations; however, the fabrication methods for SERS sensors require further study aimed at simple and rapid on-body and environmental monitoring. In this context, we propose an etching-free method for fabricating silver nanowires (AgNWs)-SERS sensors based on AgNWs. A lift-off process was conducted to create a pattern without etching, and lamination of the dry film resist overcame the limitations associated with liquid photoresists. Consequently, the resulting AgNW-patterned substrate was used to evaluate the pH of the test solution in the range of 1.1 and 12.0 and exhibited a Raman signal enhancement of 2 × 106. This fast and cost-effective fabrication method, combined with the intrinsic flexibility of the substrate and rapid and reproducible response to pH variations, provides a foundation for applying AgNW-patterned substrates for microenvironmental analysis or developing wearable optical devices.

Etching-free fabrication method for silver nanowires-based SERS sensors for enhanced molecule detection

D'Andrea, Cristiano;Matteini, Paolo
;
2024

Abstract

Surface-enhanced Raman spectroscopy (SERS) has garnered increasing attention for its ability to detect molecules even at low concentrations; however, the fabrication methods for SERS sensors require further study aimed at simple and rapid on-body and environmental monitoring. In this context, we propose an etching-free method for fabricating silver nanowires (AgNWs)-SERS sensors based on AgNWs. A lift-off process was conducted to create a pattern without etching, and lamination of the dry film resist overcame the limitations associated with liquid photoresists. Consequently, the resulting AgNW-patterned substrate was used to evaluate the pH of the test solution in the range of 1.1 and 12.0 and exhibited a Raman signal enhancement of 2 × 106. This fast and cost-effective fabrication method, combined with the intrinsic flexibility of the substrate and rapid and reproducible response to pH variations, provides a foundation for applying AgNW-patterned substrates for microenvironmental analysis or developing wearable optical devices.
2024
Istituto di Fisica Applicata - IFAC
Dry film photoresist
Lift-off process
Sensor
Silver nanowires
Surface-enhanced Raman spectroscopy
File in questo prodotto:
File Dimensione Formato  
Etching-free-fabrication-method-for-silver-nanowires-based-SERS.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact