Y2O3 transparent ceramics with different amounts of ZrO2 were obtained by reactive vacuum sintering at a relatively low temperature of 1735 °C for 22 h. The influence of ZrO2 concentration within the 0–15 mol.% range on the microstructure, phase composition, microhardness, and optical properties of ceramics in the visible and IR ranges was investigated. SEM and XRD results indicate the absence of secondary phases in the studied concentration range, indicating the formation of single-phase solid solutions. It was shown that doping by ZrO2 considerably decreases the average grain size of ceramics, while microhardness has the opposite behaviour. 15 mol.% ZrO2-doped Y2O3 ceramics demonstrated the highest transmittance in the visible wavelength range. On the other hand, 5 and 7 mol.% ZrO2-doped Y2O3 could be considered promising materials for the first atmospheric window (3–5 μm).
IR-transparent Y2O3 ceramics: Effect of zirconia concentration on optical and mechanical properties
Chernomorets, Dariia
Primo
Conceptualization
;Galizia, PietroSecondo
Formal Analysis
;Varas, Stefano;Chiasera, Alessandro;Piancastelli, Andreana;Hostasa, JanUltimo
Supervision
2024
Abstract
Y2O3 transparent ceramics with different amounts of ZrO2 were obtained by reactive vacuum sintering at a relatively low temperature of 1735 °C for 22 h. The influence of ZrO2 concentration within the 0–15 mol.% range on the microstructure, phase composition, microhardness, and optical properties of ceramics in the visible and IR ranges was investigated. SEM and XRD results indicate the absence of secondary phases in the studied concentration range, indicating the formation of single-phase solid solutions. It was shown that doping by ZrO2 considerably decreases the average grain size of ceramics, while microhardness has the opposite behaviour. 15 mol.% ZrO2-doped Y2O3 ceramics demonstrated the highest transmittance in the visible wavelength range. On the other hand, 5 and 7 mol.% ZrO2-doped Y2O3 could be considered promising materials for the first atmospheric window (3–5 μm).File | Dimensione | Formato | |
---|---|---|---|
Chernomorets 2024 effect of ZrO2.pdf
accesso aperto
Descrizione: Published version
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.87 MB
Formato
Adobe PDF
|
3.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.