Mixtures containing β-glucans were extracted from barley, under both mild and high alkaline conditions, to prepare biodegradable films (MA and HA, respectively), as natural dressings with intrinsic therapeutic properties. An in-depth characterization was performed to evaluate the impact of mild and high alkaline conditions on chemical, physicochemical, and biological features for potential use in wound treatments. Both MA and HA films exhibited a good ability to absorb water and simulate wound fluid, which helps maintain optimal tissue hydration. Moreover, their oxygen permeability (147.6 and 16.4 cm3 × μm/m2 × 24 h × Pa × 107, respectively) appeared adequate for the intended application. Biocompatibility tests showed that the films do not harm human dermal fibroblasts. Impressively, they promote cell attachment and growth, with MA having a stronger effect due to its higher β-glucan content. Furthermore, MA films can modulate macrophage behaviour in an inflamed microenvironment, reducing oxidative stress and pro-inflammatory cytokines, while simultaneously increasing levels of anti-inflammatory cytokines. In a scratch test, HA films allowed for faster fibroblast migration within the first 16 h compared to MA. Overall, this study demonstrates that developing β-glucan based films from barley, through a sustainable and cost-effective process, holds great promise for skin applications. These films exhibit significant potential to promote wound healing and modulate inflammation.

Barley β-glucan bioactive films: Promising eco-friendly materials for wound healing

Soriente, Alessandra;Zuppardi, Federica;Duraccio, Donatella;d'Ayala, Giovanna Gomez
;
Ambrosio, Luigi;Raucci, Maria Grazia
2024

Abstract

Mixtures containing β-glucans were extracted from barley, under both mild and high alkaline conditions, to prepare biodegradable films (MA and HA, respectively), as natural dressings with intrinsic therapeutic properties. An in-depth characterization was performed to evaluate the impact of mild and high alkaline conditions on chemical, physicochemical, and biological features for potential use in wound treatments. Both MA and HA films exhibited a good ability to absorb water and simulate wound fluid, which helps maintain optimal tissue hydration. Moreover, their oxygen permeability (147.6 and 16.4 cm3 × μm/m2 × 24 h × Pa × 107, respectively) appeared adequate for the intended application. Biocompatibility tests showed that the films do not harm human dermal fibroblasts. Impressively, they promote cell attachment and growth, with MA having a stronger effect due to its higher β-glucan content. Furthermore, MA films can modulate macrophage behaviour in an inflamed microenvironment, reducing oxidative stress and pro-inflammatory cytokines, while simultaneously increasing levels of anti-inflammatory cytokines. In a scratch test, HA films allowed for faster fibroblast migration within the first 16 h compared to MA. Overall, this study demonstrates that developing β-glucan based films from barley, through a sustainable and cost-effective process, holds great promise for skin applications. These films exhibit significant potential to promote wound healing and modulate inflammation.
2024
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Istituto per i Polimeri, Compositi e Biomateriali - IPCB - Sede Secondaria di Napoli (Portici)
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS - Sede Secondaria Torino
Anti-inflammatory activity
Barley
Biodegradable films
Wound dressing
β-Glucans
File in questo prodotto:
File Dimensione Formato  
Revised Manuscript_clean version_r2.pdf

embargo fino al 05/08/2025

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
International_Journal_biological_macromolecules.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact