A systematic microstructural characterization of alumina joined to Hastelloy C22® by means of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The contact angles of the liquid BTi-5 alloy measured at 900°C for the two materials to be joined are 12° and 47° for alumina and Hastelloy C22® after 5 min, respectively, thus demonstrating good wetting and adhesion at 900 °C with very little interfacial reactivity or interdiffusion. The thermomechanical stresses caused by the difference in the coefficient of thermal expansion (CTE) between the Hastelloy C22® superalloy (≈15.3 × 10−6 K−1) and its alumina counterpart (≈8 × 10−6 K−1) were the key issues that had to be resolved to avoid failure in this joint. In this work, a circular configuration of the Hastelloy C22®/alumina joint was specifically designed to produce a feedthrough for sodium-based liquid metal batteries operating at high temperatures (up to 600 °C). In this configuration, adhesion between the metal and ceramic components was enhanced after cooling by compressive forces created on the joined area due to the difference in CTE between the two materials.

The Joining of Alumina to Hastelloy by a TiZrCuNi Filler Metal: Wettability and Interfacial Reactivity

Valenza F.
Writing – Review & Editing
;
Gambaro S.
Writing – Review & Editing
;
2023

Abstract

A systematic microstructural characterization of alumina joined to Hastelloy C22® by means of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The contact angles of the liquid BTi-5 alloy measured at 900°C for the two materials to be joined are 12° and 47° for alumina and Hastelloy C22® after 5 min, respectively, thus demonstrating good wetting and adhesion at 900 °C with very little interfacial reactivity or interdiffusion. The thermomechanical stresses caused by the difference in the coefficient of thermal expansion (CTE) between the Hastelloy C22® superalloy (≈15.3 × 10−6 K−1) and its alumina counterpart (≈8 × 10−6 K−1) were the key issues that had to be resolved to avoid failure in this joint. In this work, a circular configuration of the Hastelloy C22®/alumina joint was specifically designed to produce a feedthrough for sodium-based liquid metal batteries operating at high temperatures (up to 600 °C). In this configuration, adhesion between the metal and ceramic components was enhanced after cooling by compressive forces created on the joined area due to the difference in CTE between the two materials.
2023
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Genova
active brazing
Al2O3
Wetting
Joining
batteries
Hastelloy
File in questo prodotto:
File Dimensione Formato  
materials-16-01976.pdf

accesso aperto

Licenza: Creative commons
Dimensione 9.75 MB
Formato Adobe PDF
9.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact