Iron-based superconductors are under study for their potential for high-field applications due to their excellent superconducting properties such as low structural anisotropy, large upper critical fields and low field dependence of the critical current density. Between them, Fe(Se,Te) is simple to be synthesized and can be fabricated as a coated conductor through laser ablation on simple metallic templates. In order to make all the steps simple and fast, we have applied the spark plasma sintering technique to synthesize bulk Fe(Se,Te) to obtain quite dense polycrystals in a very short time. The resulting polycrystals are very well connected and show excellent superconducting properties, with a critical temperature onset of about 16 K. In addition, when used as targets for pulsed laser ablation, good thin films are obtained with a critical current density above 105 A cm−2 up to 16 T.

Fe(Se,Te) Thin Films Deposited through Pulsed Laser Ablation from Spark Plasma Sintered Targets

Michela Iebole
Primo
;
Valeria Braccini
;
Cristina Bernini;Andrea Malagoli;Nicola Manca;Alberto Martinelli;Matteo Cialone;Marina Putti;Giovanna Latronico;
2024

Abstract

Iron-based superconductors are under study for their potential for high-field applications due to their excellent superconducting properties such as low structural anisotropy, large upper critical fields and low field dependence of the critical current density. Between them, Fe(Se,Te) is simple to be synthesized and can be fabricated as a coated conductor through laser ablation on simple metallic templates. In order to make all the steps simple and fast, we have applied the spark plasma sintering technique to synthesize bulk Fe(Se,Te) to obtain quite dense polycrystals in a very short time. The resulting polycrystals are very well connected and show excellent superconducting properties, with a critical temperature onset of about 16 K. In addition, when used as targets for pulsed laser ablation, good thin films are obtained with a critical current density above 105 A cm−2 up to 16 T.
2024
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Lecco
iron-based superconductors
thin films
pulsed laser ablation
spark plasma synthesis
critical current density
File in questo prodotto:
File Dimensione Formato  
Iebole Materials 2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.14 MB
Formato Adobe PDF
4.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact