In this study, we present an alternative fabrication technique to obtain functionally graded polymer–metal composites. The aim is to obtain a composite material with a graded damping factor, which is provided by the presence of pseudoelastic nickel–titanium (NiTi) fibres within an epoxy resin matrix. A preliminary dynamic mechanical characterisation of the NiTi wire revealed a pre-strain dependency of its damping factor. By fabricating wires with curved geometries in the free state, we were able to obtain fibres with a graded level of pre-strain when straightened. This feature in turn imparts a graded damping response. When encapsulating the straightened fibres in an epoxy resin, the graded damping response is transferred to the composite.

Synergies of material and geometrical non-linearities allow for the tuning of damping properties of functionally graded composite materials

Romano' J.
;
Garavaglia L.;Lazzari F.;Volonte' F.;Pittaccio S.
2023

Abstract

In this study, we present an alternative fabrication technique to obtain functionally graded polymer–metal composites. The aim is to obtain a composite material with a graded damping factor, which is provided by the presence of pseudoelastic nickel–titanium (NiTi) fibres within an epoxy resin matrix. A preliminary dynamic mechanical characterisation of the NiTi wire revealed a pre-strain dependency of its damping factor. By fabricating wires with curved geometries in the free state, we were able to obtain fibres with a graded level of pre-strain when straightened. This feature in turn imparts a graded damping response. When encapsulating the straightened fibres in an epoxy resin, the graded damping response is transferred to the composite.
2023
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Lecco
Intermetallics
Internal friction/damping
Mechanical testing
File in questo prodotto:
File Dimensione Formato  
2023 Romanò et al - Synergies of material and geometrical non-linearities allow for the tuning of damping properties of functionally graded composite materials.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact