Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.

Sustained Depolarization Induces Gene Expression Pattern Changes Related to Synaptic Plasticity in a Human Cholinergic Cellular Model

Emilia Vitale
;
Manuela Turco;
2024

Abstract

Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.
2024
Istituto di Biochimica e Biologia Cellulare - IBBC
Alzheimer's Disease; Cholinergic Neurons; Gene Expression; SH-SY5Y Cells; Synaptic Plasticity.
File in questo prodotto:
File Dimensione Formato  
s12035-024-04262-w.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact