Lateral heterostructures (LH) of monolayer-multilayer regions of the same noble transition metal dichalcogenide, such as platinum diselenide (PtSe2), are promising options for the fabrication of efficient two-dimensional field-effect transistors (FETs), by exploiting the dependence of the energy gap on the number of layers and the intrinsically high quality of the heterojunctions. Key for future progress in this direction is understanding the effects of the physics of the lateral interfaces on far-from-equilibrium transport properties. In this work, a multi-scale approach to device simulation, capable to include ab-initio modelling of the interfaces in a computationally efficient way, is presented. As an application, p- and n-type monolayer-multilayer PtSe2 LH-FETs are investigated, considering design parameters such as channel length, number of layers and junction quality. The simulations suggest that such transistors can provide high performance in terms of subthreshold characteristics and switching behavio

Physical insights on transistors based on lateral heterostructures of monolayer and multilayer PtSe2 via Ab initio modelling of interfaces

Calogero G.
Primo
;
Iannaccone G.
Ultimo
2021

Abstract

Lateral heterostructures (LH) of monolayer-multilayer regions of the same noble transition metal dichalcogenide, such as platinum diselenide (PtSe2), are promising options for the fabrication of efficient two-dimensional field-effect transistors (FETs), by exploiting the dependence of the energy gap on the number of layers and the intrinsically high quality of the heterojunctions. Key for future progress in this direction is understanding the effects of the physics of the lateral interfaces on far-from-equilibrium transport properties. In this work, a multi-scale approach to device simulation, capable to include ab-initio modelling of the interfaces in a computationally efficient way, is presented. As an application, p- and n-type monolayer-multilayer PtSe2 LH-FETs are investigated, considering design parameters such as channel length, number of layers and junction quality. The simulations suggest that such transistors can provide high performance in terms of subthreshold characteristics and switching behavio
2021
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Ballistic transport, quantum transport, electrode, interface, 2D materials, platinum diselenide, Wannier functions, density functional theory
File in questo prodotto:
File Dimensione Formato  
2021_scientific_reports.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact