Injectable hydrogels have revealed the great potential for use as scaffolds in cartilage and bone tissue engineering. Here, thermosensitive and injectable hydrogels containing β-tricalcium phosphate, hyaluronic acid, and corn silk extract-nanosilver (CSE-Ag NPs) were synthesized for their potential use in bone tissue regeneration applications. Spherical nanoparticles of silver were biosynthesized through microwave-assisted green approach using CSE in organic solvent-free medium. Rheological experiments demonstrated that the thermosensitive hydrogels have gelification temperature (Tgel) close to body temperature. The samples containing Ag NPs showed antibacterial activity toward gram-positive (Bacillus Subtilis, Staphylococcus Aureus) and gram-negative (Pseudomonas Aeruginosa, Escherichia Coli) bacteria along without cytotoxicity after 24h. Mesenchymal stem cells seeded in the nanocomposite exhibited high bone differentiation which indicate that thay could be a good candidate as a potential scaffold for bone tissue regeneration.
Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration
Della Sala F;Borzacchiello A
2020
Abstract
Injectable hydrogels have revealed the great potential for use as scaffolds in cartilage and bone tissue engineering. Here, thermosensitive and injectable hydrogels containing β-tricalcium phosphate, hyaluronic acid, and corn silk extract-nanosilver (CSE-Ag NPs) were synthesized for their potential use in bone tissue regeneration applications. Spherical nanoparticles of silver were biosynthesized through microwave-assisted green approach using CSE in organic solvent-free medium. Rheological experiments demonstrated that the thermosensitive hydrogels have gelification temperature (Tgel) close to body temperature. The samples containing Ag NPs showed antibacterial activity toward gram-positive (Bacillus Subtilis, Staphylococcus Aureus) and gram-negative (Pseudomonas Aeruginosa, Escherichia Coli) bacteria along without cytotoxicity after 24h. Mesenchymal stem cells seeded in the nanocomposite exhibited high bone differentiation which indicate that thay could be a good candidate as a potential scaffold for bone tissue regeneration.File | Dimensione | Formato | |
---|---|---|---|
Makvandi 2020 Mat Scien Eng C.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.8 MB
Formato
Adobe PDF
|
8.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.