Injectable hydrogels have revealed the great potential for use as scaffolds in cartilage and bone tissue engineering. Here, thermosensitive and injectable hydrogels containing β-tricalcium phosphate, hyaluronic acid, and corn silk extract-nanosilver (CSE-Ag NPs) were synthesized for their potential use in bone tissue regeneration applications. Spherical nanoparticles of silver were biosynthesized through microwave-assisted green approach using CSE in organic solvent-free medium. Rheological experiments demonstrated that the thermosensitive hydrogels have gelification temperature (Tgel) close to body temperature. The samples containing Ag NPs showed antibacterial activity toward gram-positive (Bacillus Subtilis, Staphylococcus Aureus) and gram-negative (Pseudomonas Aeruginosa, Escherichia Coli) bacteria along without cytotoxicity after 24h. Mesenchymal stem cells seeded in the nanocomposite exhibited high bone differentiation which indicate that thay could be a good candidate as a potential scaffold for bone tissue regeneration.

Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration

Della Sala F;Borzacchiello A
2020

Abstract

Injectable hydrogels have revealed the great potential for use as scaffolds in cartilage and bone tissue engineering. Here, thermosensitive and injectable hydrogels containing β-tricalcium phosphate, hyaluronic acid, and corn silk extract-nanosilver (CSE-Ag NPs) were synthesized for their potential use in bone tissue regeneration applications. Spherical nanoparticles of silver were biosynthesized through microwave-assisted green approach using CSE in organic solvent-free medium. Rheological experiments demonstrated that the thermosensitive hydrogels have gelification temperature (Tgel) close to body temperature. The samples containing Ag NPs showed antibacterial activity toward gram-positive (Bacillus Subtilis, Staphylococcus Aureus) and gram-negative (Pseudomonas Aeruginosa, Escherichia Coli) bacteria along without cytotoxicity after 24h. Mesenchymal stem cells seeded in the nanocomposite exhibited high bone differentiation which indicate that thay could be a good candidate as a potential scaffold for bone tissue regeneration.
2020
Istituto per i Polimeri, Compositi e Biomateriali - IPCB - Sede Secondaria di Napoli (Portici)
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Thermosensitive hydrogels, Bone tissue engineering, Green synthesis, Antibacterial properties, Corn silk extract
File in questo prodotto:
File Dimensione Formato  
Makvandi 2020 Mat Scien Eng C.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.8 MB
Formato Adobe PDF
8.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact