The Enemy Release Hypothesis (ERH) proposes that the success of bioinvasions is attributable to lower enemy pressure on invasive species compared to native ones, giving a competitive advantage for invaders. In line with the hypothesis, we previously observed in northern European bodies of fresh water that invasive bivalves were subject to lower parasite pressure than sympatric native mussels. Here, we investigated ERH in three southern European lakes, where the native mussels are rapidly declining and being replaced by non-native bivalves. In total, 679 bivalves (n of individuals per species per lake varying from 12 to 187) were collected during 2016–2018. Ten parasite taxa were found. The mean lake-specific number of parasite taxa in the native mussels (Anodonta exulcerata, A. cygnea, A. anatina and Unio elongatulus) was 2.6 times that in the invasive bivalves (Dreissena polymorpha, Corbicula fluminea and Sinanodonta woodiana). Similarly, the mean lake-specific sum of prevalences of infection by different parasite taxa in the native mussels was 3.4 times that in the invasive bivalves. Notable was the complete lack of parasites in C. fluminea. Thus, the results supported the Enemy Release Hypothesis and were in accordance with previous results from northern Europe, suggesting, on average, a lower parasite pressure in invasive bivalves than in sympatric native mussels. As parasites are usually harmful, this may contribute to the observed successful invasion of non-native freshwater bivalves in Europe.
Lower parasite pressure in invasive freshwater bivalves than in sympatric native Unionidae mussels in southern European lakes
Nicoletta RiccardiSecondo
Conceptualization
;
2025
Abstract
The Enemy Release Hypothesis (ERH) proposes that the success of bioinvasions is attributable to lower enemy pressure on invasive species compared to native ones, giving a competitive advantage for invaders. In line with the hypothesis, we previously observed in northern European bodies of fresh water that invasive bivalves were subject to lower parasite pressure than sympatric native mussels. Here, we investigated ERH in three southern European lakes, where the native mussels are rapidly declining and being replaced by non-native bivalves. In total, 679 bivalves (n of individuals per species per lake varying from 12 to 187) were collected during 2016–2018. Ten parasite taxa were found. The mean lake-specific number of parasite taxa in the native mussels (Anodonta exulcerata, A. cygnea, A. anatina and Unio elongatulus) was 2.6 times that in the invasive bivalves (Dreissena polymorpha, Corbicula fluminea and Sinanodonta woodiana). Similarly, the mean lake-specific sum of prevalences of infection by different parasite taxa in the native mussels was 3.4 times that in the invasive bivalves. Notable was the complete lack of parasites in C. fluminea. Thus, the results supported the Enemy Release Hypothesis and were in accordance with previous results from northern Europe, suggesting, on average, a lower parasite pressure in invasive bivalves than in sympatric native mussels. As parasites are usually harmful, this may contribute to the observed successful invasion of non-native freshwater bivalves in Europe.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.