Herein we report on a novel enzymatic fuel cell (EFC) based on stencil printed electrodes modified with pyrrolo quinoline quinone glucose dehydrogenase and bilirubin oxidase, which are assembled by considering two different configurations: (i) normal assembling in liquid electrolyte and (ii) six EFCs connected in series, each one comprising both bioanode and biocathode, coupled through a hydrogel-based electrolyte in a stack-like mode similar to a Voltaic pile. After a deep electrodes characterization, they are assembled according to the first configuration obtaining an open circuit voltage (OCV) of 0.562 +/- 0.002 V. Moreover, the EFC performance are substantially improved by using the second configuration (six EFCs connected in series) obtaining an OCV of 2.36 +/- 0.22 V with a maximum power output of 22.9 +/- 0.9 mu Wat a cell voltage of 1.95 V (operating in 10 mM D-glucose). This innovative approach represents a proof-of-concept towards the development of renewable power sources and could serve as acritical step in powering implantable bioelectronics, such as pacemakers
High voltage flexible glucose/O2 fully printed hydrogel-based enzymatic fuel cell
Macchia, Eleonora;Di Franco, Cinzia;Scamarcio, Gaetano;Torsi, Luisa
;
2024
Abstract
Herein we report on a novel enzymatic fuel cell (EFC) based on stencil printed electrodes modified with pyrrolo quinoline quinone glucose dehydrogenase and bilirubin oxidase, which are assembled by considering two different configurations: (i) normal assembling in liquid electrolyte and (ii) six EFCs connected in series, each one comprising both bioanode and biocathode, coupled through a hydrogel-based electrolyte in a stack-like mode similar to a Voltaic pile. After a deep electrodes characterization, they are assembled according to the first configuration obtaining an open circuit voltage (OCV) of 0.562 +/- 0.002 V. Moreover, the EFC performance are substantially improved by using the second configuration (six EFCs connected in series) obtaining an OCV of 2.36 +/- 0.22 V with a maximum power output of 22.9 +/- 0.9 mu Wat a cell voltage of 1.95 V (operating in 10 mM D-glucose). This innovative approach represents a proof-of-concept towards the development of renewable power sources and could serve as acritical step in powering implantable bioelectronics, such as pacemakersFile | Dimensione | Formato | |
---|---|---|---|
Marchianò_2024_J._Phys._D__Appl._Phys._57_135503.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.