The control of the Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron microscopy. The nanotexture depends on the orientation of the electric field; it is nonvolatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of nonvolatile electronics based on voltage-controlled nanometric phases.

Pattern Formation by Electric-Field Quench in a Mott Crystal

Forte F.;Fittipaldi R.;Cuono G.;Lettieri M.;Miletto Granozio F.;Vecchione A.;Cuoco M.
2023

Abstract

The control of the Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron microscopy. The nanotexture depends on the orientation of the electric field; it is nonvolatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of nonvolatile electronics based on voltage-controlled nanometric phases.
2023
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Electric field
electron microscopy
electronic ordering
metal−insulator transition
orbital ordering
stripe phases
File in questo prodotto:
File Dimensione Formato  
gauquelin-et-al-2023-pattern-formation-by-electric-field-quench-in-a-mott-crystal-1.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.53 MB
Formato Adobe PDF
7.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact