: Hydrogen peroxide (H2O2) is a biomarker relevant for oxidative stress monitoring. Most chronic airway diseases are characterized by increased oxidative stress. To date, the main methods for the detection of this analyte are expensive and time-consuming laboratory techniques such as fluorometric and colorimetric assays. There is a growing interest in the development of electrochemical sensors for H2O2 detection due to their low cost, ease of use, sensitivity and rapid response. In this work, an electrochemical sensor based on gold nanowire arrays has been developed. Thanks to the catalytic activity of gold against hydrogen peroxide reduction and the high surface area of nanowires, this sensor allows the quantification of this analyte in a fast, efficient and selective way. The sensor was obtained by template electrodeposition and consists of gold nanowires about 5 μm high and with an average diameter of about 200 nm. The high active surface area of this electrode, about 7 times larger than a planar gold electrode, ensured a high sensitivity of the sensor (0.98 μA μM-1cm-2). The sensor allows the quantification of hydrogen peroxide in the range from 10 μM to 10 mM with a limit of detection of 3.2 μM. The sensor has excellent properties in terms of reproducibility, repeatability and selectivity. The sensor was validated by quantifying the hydrogen peroxide released by human airways A549 cells exposed or not to the pro-oxidant compound rotenone. The obtained results were validated by comparing them with those obtained by flow cytometry after staining the cells with the fluorescent superoxide-sensitive Mitosox Red probe giving a very good concordance.

Gold nanowires-based sensor for quantification of H2O2 released by human airway epithelial cells

SERENA DI VINCENZO;Maria Ferraro;Chiara Cipollina;Elisabetta Pace
2024

Abstract

: Hydrogen peroxide (H2O2) is a biomarker relevant for oxidative stress monitoring. Most chronic airway diseases are characterized by increased oxidative stress. To date, the main methods for the detection of this analyte are expensive and time-consuming laboratory techniques such as fluorometric and colorimetric assays. There is a growing interest in the development of electrochemical sensors for H2O2 detection due to their low cost, ease of use, sensitivity and rapid response. In this work, an electrochemical sensor based on gold nanowire arrays has been developed. Thanks to the catalytic activity of gold against hydrogen peroxide reduction and the high surface area of nanowires, this sensor allows the quantification of this analyte in a fast, efficient and selective way. The sensor was obtained by template electrodeposition and consists of gold nanowires about 5 μm high and with an average diameter of about 200 nm. The high active surface area of this electrode, about 7 times larger than a planar gold electrode, ensured a high sensitivity of the sensor (0.98 μA μM-1cm-2). The sensor allows the quantification of hydrogen peroxide in the range from 10 μM to 10 mM with a limit of detection of 3.2 μM. The sensor has excellent properties in terms of reproducibility, repeatability and selectivity. The sensor was validated by quantifying the hydrogen peroxide released by human airways A549 cells exposed or not to the pro-oxidant compound rotenone. The obtained results were validated by comparing them with those obtained by flow cytometry after staining the cells with the fluorescent superoxide-sensitive Mitosox Red probe giving a very good concordance.
2024
Istituto di Farmacologia Traslazionale - IFT - Sede Secondaria Palermo
A549 cells
Electrochemical sensors
Epithelial cells
Gold nanowires
Hydrogen peroxide
Oxidative stress
File in questo prodotto:
File Dimensione Formato  
2024_talanta-compresso (1).pdf

accesso aperto

Licenza: Creative commons
Dimensione 538.93 kB
Formato Adobe PDF
538.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact