Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine.

Mathematical Modeling of Biological Systems: Geometry, Symmetry and Conservation Laws

Papa Federico;Sinisgalli Carmela
2022

Abstract

Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine.
2022
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
9783036527659
9783036527642
mathematical modeling, eco-epidemiology, epidemic ODE model,system control and identification, blood microcirculation
File in questo prodotto:
File Dimensione Formato  
Simmetry_2022.pdf

accesso aperto

Descrizione: Mathematical Modeling of Biological Systems: Geometry, Simmetry and Conservation Laws
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 275 kB
Formato Adobe PDF
275 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact