Restarted GMRES is known to be inefficient for solving shifted systems when the shifts are handled simultaneously. Variants have been proposed to enhance its performance. We show that another restarted method, restarted Full Orthogonalization Method (FOM), can effectively be employed. The total number of iterations of restarted FOM applied to all shifted systems simultaneously is the same as that obtained by applying restarted FOM to the shifted system with slowest convergence rate, while the computational cost grows only sub-linearly with the number of shifts. Numerical experiments are reported.

Restarted full orthogonalization method for shifted linear systems

2003

Abstract

Restarted GMRES is known to be inefficient for solving shifted systems when the shifts are handled simultaneously. Variants have been proposed to enhance its performance. We show that another restarted method, restarted Full Orthogonalization Method (FOM), can effectively be employed. The total number of iterations of restarted FOM applied to all shifted systems simultaneously is the same as that obtained by applying restarted FOM to the shifted system with slowest convergence rate, while the computational cost grows only sub-linearly with the number of shifts. Numerical experiments are reported.
2003
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact