Superconducting microstrip single photon detectors (SMSPDs) are increasingly attracting the interest of the scientific community as a new platform for large area detectors with unprecedented advantaged in terms of fabrication. However, while their operativity at the telecommunication wavelength was achieved, working beyond 1.55 µm is challenging. Here, we experimentally demonstrate single-photon operation of NbRe microstrips at wavelengths of 1.55 and 2 µm. The devices are structured as pairs of parallel microstrips with widths ranging from 1.4 to 2.2 μm and lengths from 5 to 10 μm. This innovative design may assure large sensitive areas, without affecting the kinetic inductance, namely the time performance of the detectors. The results are discussed in the framework of the hot-spot two-temperature model.

Single photon detection up to 2 µm in pair of parallel microstrips based on NbRe ultrathin films

Cirillo, C.
;
Ejrnaes, M.;Cassinese, A.;Salvoni, D.;Attanasio, C.;Pepe, G. P.;
2024

Abstract

Superconducting microstrip single photon detectors (SMSPDs) are increasingly attracting the interest of the scientific community as a new platform for large area detectors with unprecedented advantaged in terms of fabrication. However, while their operativity at the telecommunication wavelength was achieved, working beyond 1.55 µm is challenging. Here, we experimentally demonstrate single-photon operation of NbRe microstrips at wavelengths of 1.55 and 2 µm. The devices are structured as pairs of parallel microstrips with widths ranging from 1.4 to 2.2 μm and lengths from 5 to 10 μm. This innovative design may assure large sensitive areas, without affecting the kinetic inductance, namely the time performance of the detectors. The results are discussed in the framework of the hot-spot two-temperature model.
2024
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Fisciano
Microstrips
NIR single photon detectors
Superconducting detectors
File in questo prodotto:
File Dimensione Formato  
Cirillo_et_al-2024-Scientific_Reports.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact