Ozone (O3) is an oxidative pollutant that significantly threatens plant development and ecological dynamics. The present study explores the impact of O3 on Moringa (Moringa oleifera) ecotypes when exposed to ambient and elevated O3 levels. Elevated O3 concentrations resulted in significant reductions in total biomass for all ecotypes. Photosynthetic parameters, including stomatal conductance (gsto), CO2 assimilation (Pn), and carboxylation efficiency (K), decreased under elevated O3 in some ecotypes, indicating a detrimental effect on carbon assimilation. Nonstructural carbohydrate (NSC) levels in roots varied among ecotypes, with significant reductions in starch content observed under elevated O3, suggesting a potential shift towards soluble sugar accumulation and reallocation for antioxidant defense. Secondary metabolite analysis revealed increased polyphenol production, particularly quercetin derivatives, under elevated O3 in specific ecotypes, highlighting their role in mitigating oxidative stress. Interestingly, the glucosinolate content also varied, with some ecotypes exhibiting increased levels, suggesting a complex regulatory mechanism in response to O3 exposure. The study underscores the intrinsic variability among Moringa ecotypes in response to O3 stress, emphasizing the importance of genetic diversity for adaptation. The findings indicate that Moringa's metabolic plasticity, including shifts in NSC and SM production, plays a crucial role in its defense mechanisms against O3-induced oxidative stress. These insights are vital for optimizing the cultivation and utilization of Moringa in diverse environmental conditions, particularly in regions with elevated O3 levels.

Stress physiology of Moringa oleifera under tropospheric ozone enrichment: An ecotype‐specific investigation into growth, nonstructural carbohydrates, and polyphenols

Bárbara Baesso Moura;Yasutomo Hoshika;Cecilia Brunetti;Elena Marra;Elena Paoletti;Francesco Ferrini
2024

Abstract

Ozone (O3) is an oxidative pollutant that significantly threatens plant development and ecological dynamics. The present study explores the impact of O3 on Moringa (Moringa oleifera) ecotypes when exposed to ambient and elevated O3 levels. Elevated O3 concentrations resulted in significant reductions in total biomass for all ecotypes. Photosynthetic parameters, including stomatal conductance (gsto), CO2 assimilation (Pn), and carboxylation efficiency (K), decreased under elevated O3 in some ecotypes, indicating a detrimental effect on carbon assimilation. Nonstructural carbohydrate (NSC) levels in roots varied among ecotypes, with significant reductions in starch content observed under elevated O3, suggesting a potential shift towards soluble sugar accumulation and reallocation for antioxidant defense. Secondary metabolite analysis revealed increased polyphenol production, particularly quercetin derivatives, under elevated O3 in specific ecotypes, highlighting their role in mitigating oxidative stress. Interestingly, the glucosinolate content also varied, with some ecotypes exhibiting increased levels, suggesting a complex regulatory mechanism in response to O3 exposure. The study underscores the intrinsic variability among Moringa ecotypes in response to O3 stress, emphasizing the importance of genetic diversity for adaptation. The findings indicate that Moringa's metabolic plasticity, including shifts in NSC and SM production, plays a crucial role in its defense mechanisms against O3-induced oxidative stress. These insights are vital for optimizing the cultivation and utilization of Moringa in diverse environmental conditions, particularly in regions with elevated O3 levels.
2024
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Moringa ecotypes
nonstructural carbohydrates
ozone stress
photosynthetic efficiency
secondary metabolites
File in questo prodotto:
File Dimensione Formato  
Moringa oleifera under tropospheric ozone enrichment An ecotype‐specific investigation into growth, nonstructural carbohydrates, and polyphenols.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact