Phylosymbiosis, the association between the phylogenetic relatedness of hosts and the composition of their microbial communities, is a widespread phenomenon in diverse animal taxa. However, the generality of the existence of such a pattern has been questioned in many animals across the tree of life, including small-sized aquatic invertebrates. This study aims to investigate the microbial communities associated with poorly known marine interstitial nemerteans to uncover their microbiota diversity and assess the occurrence of phylosymbiosis. Specimens from various Central American sites were analyzed using morphology-based taxonomy and molecular techniques targeting the host 18S rRNA gene whereas their microbial association was analyzed by targeting the prokaryotic 16S rRNA gene. Phylogenetic and statistical analyses were conducted to examine the potential effects of host nemertean taxa and sampling locations on the host-associated microbial communities. The results provide compelling evidence of phylosymbiosis in meiofaunal nemertean species, highlighting the significant impact of host genetic relatedness on microbiome diversity in small-sized animals. This finding supports previous studies that demonstrate how certain nemertean species harbor distinct microbial communities with functional and ecological implications. Given the remarkable diversity of meiofaunal animals—spanning numerous phyla with varying lifestyles and co-existing in the same habitat—combined with advancements in multi-omics approaches, there is a promising opportunity to deepen our understanding of the evolutionary and ecological interactions between hosts and their microbiota throughout the animal tree of life.

Microbiota associated With Ototyphlonemertes species (Nemertea, Hoplonemertea, Monostilifera, Ototyphlonemertidae) reveal evidence of phylosymbiosis

Ester M. Eckert;Diego Fontaneto
Ultimo
2024

Abstract

Phylosymbiosis, the association between the phylogenetic relatedness of hosts and the composition of their microbial communities, is a widespread phenomenon in diverse animal taxa. However, the generality of the existence of such a pattern has been questioned in many animals across the tree of life, including small-sized aquatic invertebrates. This study aims to investigate the microbial communities associated with poorly known marine interstitial nemerteans to uncover their microbiota diversity and assess the occurrence of phylosymbiosis. Specimens from various Central American sites were analyzed using morphology-based taxonomy and molecular techniques targeting the host 18S rRNA gene whereas their microbial association was analyzed by targeting the prokaryotic 16S rRNA gene. Phylogenetic and statistical analyses were conducted to examine the potential effects of host nemertean taxa and sampling locations on the host-associated microbial communities. The results provide compelling evidence of phylosymbiosis in meiofaunal nemertean species, highlighting the significant impact of host genetic relatedness on microbiome diversity in small-sized animals. This finding supports previous studies that demonstrate how certain nemertean species harbor distinct microbial communities with functional and ecological implications. Given the remarkable diversity of meiofaunal animals—spanning numerous phyla with varying lifestyles and co-existing in the same habitat—combined with advancements in multi-omics approaches, there is a promising opportunity to deepen our understanding of the evolutionary and ecological interactions between hosts and their microbiota throughout the animal tree of life.
2024
Istituto di Ricerca sulle Acque - IRSA - Sede Secondaria Verbania
meiofauna
microbiome
microbiota
Nemertea
phylosymbiosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact