Helical distortion of polyaromatic hydrocarbons gives rise to a special class of π-conjugated systems, namely helicenes. Owing to their configurational stability and easily tunable optoelectronic properties (via heteroatom-doping), helicenes have recently come to the fore as building blocks for applications in materials science (CP-OLEDs, chiroptical switches). In this context, boron-doped helicenes are particularly promising. Herein, we report the synthesis of the new (BO)2-doped tetrathia[7]helicene 2, derived by the formal inversion of (Mes)B–O moieties in the (previously reported) isomer 1. Theoretical characterization of 2, and comparison with 1, revealed that the inversion of the BO vectors promotes the extension of the LUMO via the central thiophene–benzene–thiophene fragment (and not via the terminal thiophene rings, as in 1), resulting in a considerable lowering of the LUMO energy (ELUMO(2) = −2.22 eV vs. ELUMO(1) = −1.65 eV). Spectroscopic studies revealed that the “BO bond inversion” also contributes to the narrowing of the energy gap (Eoptg (2) = 2.90 eV vs. Eoptg (1) = 3.16 eV) and causes a significant red-shift of the absorption/emission bands (≈40 nm). Interestingly, besides low fluorescence quantum yield (ΦPL(2) = 7%), 2 shows detectable circularly polarized luminescence (glum = 0.8 × 10−3) and pronounced phosphorescence at low temperature (77 K). (P)-/(M)-enantiomers of 2 were successfully separated by CSP-UHPLC and proved to be stable (ΔG‡enant = 29.4 ± 0.1 kcal mol−1 at 353 K). Racemization studies combined with theoretical calculations confirmed that BO-doping is an extremely perturbative tool for tuning the mechanical rigidity of tetrathia[7]helicenes (ΔG‡enant (2) is 10 kcal mol−1 lower than ΔG‡enant (7TH)).

(BO)2-doped tetrathia[7]helicenes: synthesis and property-change induced by “BO bond inversion”

Baldoli, Clara;Penconi, Marta;
2024

Abstract

Helical distortion of polyaromatic hydrocarbons gives rise to a special class of π-conjugated systems, namely helicenes. Owing to their configurational stability and easily tunable optoelectronic properties (via heteroatom-doping), helicenes have recently come to the fore as building blocks for applications in materials science (CP-OLEDs, chiroptical switches). In this context, boron-doped helicenes are particularly promising. Herein, we report the synthesis of the new (BO)2-doped tetrathia[7]helicene 2, derived by the formal inversion of (Mes)B–O moieties in the (previously reported) isomer 1. Theoretical characterization of 2, and comparison with 1, revealed that the inversion of the BO vectors promotes the extension of the LUMO via the central thiophene–benzene–thiophene fragment (and not via the terminal thiophene rings, as in 1), resulting in a considerable lowering of the LUMO energy (ELUMO(2) = −2.22 eV vs. ELUMO(1) = −1.65 eV). Spectroscopic studies revealed that the “BO bond inversion” also contributes to the narrowing of the energy gap (Eoptg (2) = 2.90 eV vs. Eoptg (1) = 3.16 eV) and causes a significant red-shift of the absorption/emission bands (≈40 nm). Interestingly, besides low fluorescence quantum yield (ΦPL(2) = 7%), 2 shows detectable circularly polarized luminescence (glum = 0.8 × 10−3) and pronounced phosphorescence at low temperature (77 K). (P)-/(M)-enantiomers of 2 were successfully separated by CSP-UHPLC and proved to be stable (ΔG‡enant = 29.4 ± 0.1 kcal mol−1 at 353 K). Racemization studies combined with theoretical calculations confirmed that BO-doping is an extremely perturbative tool for tuning the mechanical rigidity of tetrathia[7]helicenes (ΔG‡enant (2) is 10 kcal mol−1 lower than ΔG‡enant (7TH)).
2024
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Milano - Via C. Golgi
Helicenes, synthesis, photophysics, chirality
File in questo prodotto:
File Dimensione Formato  
36 2024 Org Chem Front.pdf

accesso aperto

Descrizione: VoR
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
36 2024 Org Chem Front ESI.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 5.49 MB
Formato Adobe PDF
5.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact