A cell-centered finite volume method is proposed to approximate numerically the solution to the steady convection-diffusion equation on unstructured meshes of $d$-simplexes, where $d\geq 2$ is the spatial dimension. The method is formally second-order accurate by means of a piecewise linear reconstruction within each cell and at mesh vertices. An algorithm is provided to calculate nonnegative and bounded weights. Face gradients, required to discretize the diffusive fluxes, are defined by a nonlinear strategy that allows us to demonstrate the existence of a maximum principle. Finally, a set of numerical results documents the performance of the method in treating problems with internal layers and solutions with strong gradients.

A second-order maximum principle preserving finite volume method for steady convection-diffusion problems

Manzini G
2005

Abstract

A cell-centered finite volume method is proposed to approximate numerically the solution to the steady convection-diffusion equation on unstructured meshes of $d$-simplexes, where $d\geq 2$ is the spatial dimension. The method is formally second-order accurate by means of a piecewise linear reconstruction within each cell and at mesh vertices. An algorithm is provided to calculate nonnegative and bounded weights. Face gradients, required to discretize the diffusive fluxes, are defined by a nonlinear strategy that allows us to demonstrate the existence of a maximum principle. Finally, a set of numerical results documents the performance of the method in treating problems with internal layers and solutions with strong gradients.
2005
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
File in questo prodotto:
File Dimensione Formato  
prod_31044-doc_30038.pdf

accesso aperto

Descrizione: A second-order maximum principle preserving finite volume method for steady convection-diffusion problems
Dimensione 348.27 kB
Formato Adobe PDF
348.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact