The influence of molecular weight and its distribution on the nucleation density, crystallization, thermal and mechanical behavior of isotactic polypropylene based composites has been investigated. The composites were prepared by compression molding. The ability of carbon and Kevlar fibers to nucleate the polypropylene has been studied during isothermal and nonisothermal crystallization, by optical microscopy and differential scanning calorimetry (DSC), as function of crystallization temperature Tc and iPP molecular weight. Two extreme crystallization conditions were tested: quenching and slow crystallization to obtain crystals and amorphous phases of different structure. The ability of fibers to enhance mechanical properties in polypropylene based composites was examined by tensile tests at room temperature. It was found that nucleation density, crystallization parameters, and the results of tensile tests strongly depend on the molecular weight Mw of iPP, molecular weight distribution, and thermal history of polypropylene. The numerical values of the nucleation density have been found to strongly depend on the nature of fiber. In fact, Kevlar fiber has shown a better nucleating ability than carbon fiber. The results of tensile tests have been related to the sample morphology. The analysis of fractured specimens also provided useful information about fiber-matrix adhesion.

Fiber reinforced polypropylene: influence of iPP molecular mass on morphology, crystallization, thermal and mechanical properties

M Avella;
1996

Abstract

The influence of molecular weight and its distribution on the nucleation density, crystallization, thermal and mechanical behavior of isotactic polypropylene based composites has been investigated. The composites were prepared by compression molding. The ability of carbon and Kevlar fibers to nucleate the polypropylene has been studied during isothermal and nonisothermal crystallization, by optical microscopy and differential scanning calorimetry (DSC), as function of crystallization temperature Tc and iPP molecular weight. Two extreme crystallization conditions were tested: quenching and slow crystallization to obtain crystals and amorphous phases of different structure. The ability of fibers to enhance mechanical properties in polypropylene based composites was examined by tensile tests at room temperature. It was found that nucleation density, crystallization parameters, and the results of tensile tests strongly depend on the molecular weight Mw of iPP, molecular weight distribution, and thermal history of polypropylene. The numerical values of the nucleation density have been found to strongly depend on the nature of fiber. In fact, Kevlar fiber has shown a better nucleating ability than carbon fiber. The results of tensile tests have been related to the sample morphology. The analysis of fractured specimens also provided useful information about fiber-matrix adhesion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/5153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact