AgCrSe2 exhibits remarkably high ionic conduction, an inversion symmetry-breaking structural transition, and is host to complex non-colinear magnetic orders. Despite its attractive physical and chemical properties and its potential for technological applications, studies of this compound to date are focused almost exclusively on bulk samples. Here, we report the growth of AgCrS e 2 thin films via molecular beam epitaxy. Single-orientated epitaxial growth was confirmed by x-ray diffraction, while resonant photoemission spectroscopy measurements indicate a consistent electronic structure as compared to bulk single crystals. We further demonstrate significant flexibility of the grain morphology and cation stoichiometry of this compound via control of the growth parameters, paving the way for the targeted engineering of the electronic and chemical properties of AgCrS e 2 in thin-film form.

Epitaxial growth of AgCrSe2 thin films by molecular beam epitaxy

Bigi, C.;Vinai, G.;Dagur, D.;
2024

Abstract

AgCrSe2 exhibits remarkably high ionic conduction, an inversion symmetry-breaking structural transition, and is host to complex non-colinear magnetic orders. Despite its attractive physical and chemical properties and its potential for technological applications, studies of this compound to date are focused almost exclusively on bulk samples. Here, we report the growth of AgCrS e 2 thin films via molecular beam epitaxy. Single-orientated epitaxial growth was confirmed by x-ray diffraction, while resonant photoemission spectroscopy measurements indicate a consistent electronic structure as compared to bulk single crystals. We further demonstrate significant flexibility of the grain morphology and cation stoichiometry of this compound via control of the growth parameters, paving the way for the targeted engineering of the electronic and chemical properties of AgCrS e 2 in thin-film form.
2024
Istituto Officina dei Materiali - IOM -
crystal structure
electron diffraction
epitaxy
photoelectron spectroscopy
thin films
x-ray absorption spectroscopy
x-ray diffraction
File in questo prodotto:
File Dimensione Formato  
J. Appl. Phys. 135, 045303 (2024).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact