Over the last decade, electromagnetic induction (EMI) measurements have been increasingly used for investigating soil salinization caused by the use of brackish or saline water as an irrigation source. EMI measurements proved to be a powerful tool for providing spatial information on the investigated soil because of the correlation between the output geophysical parameter, i.e., the electrical conductivity, to soil moisture and salinity. In addition, their non-invasive nature and their capability to collect a high amount of data over broad areas and in a relatively short time makes these measurements attractive for monitoring flow and transport dynamics, which are otherwise undetectable with conventional measurements. In an experimental field, EMI measurements were collected during the growth season of tomatoes and irrigated with three different irrigation strategies. Time-lapse data were collected over three months in order to visualize changes in electrical conductivity associated with soil salinity. A rigorous time-lapse inversion procedure was set for modeling the soil salinization induced by brackish irrigation water. A clear soil response in terms of an increase in electrical conductivity (EC) in the upper soil layer confirmed the reliability of the geophysical tool to predict soil salinization trends.

Assessing the Impact of Brackish Water on Soil Salinization with Time-Lapse Inversion of Electromagnetic Induction Data

De Carlo L.
Primo
;
2024

Abstract

Over the last decade, electromagnetic induction (EMI) measurements have been increasingly used for investigating soil salinization caused by the use of brackish or saline water as an irrigation source. EMI measurements proved to be a powerful tool for providing spatial information on the investigated soil because of the correlation between the output geophysical parameter, i.e., the electrical conductivity, to soil moisture and salinity. In addition, their non-invasive nature and their capability to collect a high amount of data over broad areas and in a relatively short time makes these measurements attractive for monitoring flow and transport dynamics, which are otherwise undetectable with conventional measurements. In an experimental field, EMI measurements were collected during the growth season of tomatoes and irrigated with three different irrigation strategies. Time-lapse data were collected over three months in order to visualize changes in electrical conductivity associated with soil salinity. A rigorous time-lapse inversion procedure was set for modeling the soil salinization induced by brackish irrigation water. A clear soil response in terms of an increase in electrical conductivity (EC) in the upper soil layer confirmed the reliability of the geophysical tool to predict soil salinization trends.
2024
Istituto di Ricerca Sulle Acque - IRSA - Sede Secondaria Bari
apparent electrical conductivity
electromagnetic induction measurements
soil salinization
time-lapse inversion
File in questo prodotto:
File Dimensione Formato  
DeCarlo_2024_Assessing the Impact of Brackish Water on Soil Salinization with.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact