We argue that the type of meta-learning proposed by Binz et al. generates models with low interpretability and falsifiability that have limited usefulness for neuroscience research. An alternative approach to meta-learning based on hyperparameter optimization obviates these concerns and can generate empirically testable hypotheses of biological computations.
The reinforcement metalearner as a biologically plausible meta-learning framework
Vriens, TimPrimo
;Silvetti, MassimoUltimo
2024
Abstract
We argue that the type of meta-learning proposed by Binz et al. generates models with low interpretability and falsifiability that have limited usefulness for neuroscience research. An alternative approach to meta-learning based on hyperparameter optimization obviates these concerns and can generate empirically testable hypotheses of biological computations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
vriens.silvetti.meta-learning.pdf
accesso aperto
Descrizione: The reinforcement metalearner as a biologically plausible meta-learning framework
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
567.63 kB
Formato
Adobe PDF
|
567.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.