We argue that the type of meta-learning proposed by Binz et al. generates models with low interpretability and falsifiability that have limited usefulness for neuroscience research. An alternative approach to meta-learning based on hyperparameter optimization obviates these concerns and can generate empirically testable hypotheses of biological computations.

The reinforcement metalearner as a biologically plausible meta-learning framework

Vriens, Tim
Primo
;
Silvetti, Massimo
Ultimo
2024

Abstract

We argue that the type of meta-learning proposed by Binz et al. generates models with low interpretability and falsifiability that have limited usefulness for neuroscience research. An alternative approach to meta-learning based on hyperparameter optimization obviates these concerns and can generate empirically testable hypotheses of biological computations.
2024
Istituto di Scienze e Tecnologie della Cognizione - ISTC
meta-learning, reinforcement learning, artificial intelligence
File in questo prodotto:
File Dimensione Formato  
vriens.silvetti.meta-learning.pdf

accesso aperto

Descrizione: The reinforcement metalearner as a biologically plausible meta-learning framework
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 567.63 kB
Formato Adobe PDF
567.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact