First demonstrated in 1994, femtosecond stimulated Raman scattering (FSRS) has gained popularity since the early 2000s as an ultrafast pump–probe vibrational spectroscopy technique with the potential to circumvent the time and energy limitations imposed by the Heisenberg uncertainty principle. This Primer explores whether, why, when and how the temporal precision and frequency resolution of traditional time-resolved spontaneous Raman spectroscopy can be surpassed by its coherent counterpart (FSRS), while still adhering to the uncertainty principle. We delve into the fundamental concepts behind FSRS and its most common experimental implementations, focusing on instrumentation details, measurement techniques, data analysis and modelling. This includes discussions on synthesizing the Raman pump beam, artificial intelligence (AI)-assisted baseline removal methods and analytical expressions for reproducing experimental data and extracting key parameters such as relaxation times and out-of-equilibrium temperature profiles. Recent applications of FSRS from physics, chemistry and biology are showcased, demonstrating how this approach has facilitated cross-disciplinary studies. We also address the technical and conceptual limitations of FSRS to aid in designing optimal experiments based on specific goals. Finally, we explore future directions, including multidimensional extensions to address vibrational couplings and the use of quantum light to untangle temporal and spectral resolution.
Femtosecond stimulated Raman spectroscopy
Ferrante C.;
2024
Abstract
First demonstrated in 1994, femtosecond stimulated Raman scattering (FSRS) has gained popularity since the early 2000s as an ultrafast pump–probe vibrational spectroscopy technique with the potential to circumvent the time and energy limitations imposed by the Heisenberg uncertainty principle. This Primer explores whether, why, when and how the temporal precision and frequency resolution of traditional time-resolved spontaneous Raman spectroscopy can be surpassed by its coherent counterpart (FSRS), while still adhering to the uncertainty principle. We delve into the fundamental concepts behind FSRS and its most common experimental implementations, focusing on instrumentation details, measurement techniques, data analysis and modelling. This includes discussions on synthesizing the Raman pump beam, artificial intelligence (AI)-assisted baseline removal methods and analytical expressions for reproducing experimental data and extracting key parameters such as relaxation times and out-of-equilibrium temperature profiles. Recent applications of FSRS from physics, chemistry and biology are showcased, demonstrating how this approach has facilitated cross-disciplinary studies. We also address the technical and conceptual limitations of FSRS to aid in designing optimal experiments based on specific goals. Finally, we explore future directions, including multidimensional extensions to address vibrational couplings and the use of quantum light to untangle temporal and spectral resolution.| File | Dimensione | Formato | |
|---|---|---|---|
|
FSRS_Femtoscopy.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.63 MB
Formato
Adobe PDF
|
2.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


