In this study, high pressure synchrotron powder X-ray diffraction is used to investigate the compression of two high pressure polymorphs of CrSb2. The first is the CuAl2-type polymorph with an eight-fold coordinated Cr, which can be quenched to ambient conditions from high-pressure high-temperature conditions. The second is the recently discovered MoP2-type polymorph, which is induced by compression at room temperature, with a seven-fold coordinated Cr. Here, the assigned structure is unambiguously confirmed by solving it from single-crystal X-ray diffraction. Furthermore, the electrical properties of the MoP2-type polymorph were investigated theoretically and the resistance calculations under pressure were accompanied by resistance measurements under high pressure on a single crystal of CrSb2. The calculated electronic band structure for the MoP2-type phase is discussed and we show that the polymorph is semimetallic and possesses type-I Weyl points. No further phase transitions were observed for the CuAl2-type structure up to 50 GPa and 40 GPa for the MoP2-type structure. Even though the CuAl2-phase has the highest coordination number of Cr, it was found to be less compressible than the MoP2-phase having a seven-fold coordinated Cr, which was attributed to the longer Cr-Sb distance in the CuAl2-type phase. The discovery of a type-I Weyl semimetallic phase in CrSb2 opens up for discovering other Weyl semimetals in the transition metal di-pnictides under high pressure.

Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs

Ceresoli, Davide
;
2024

Abstract

In this study, high pressure synchrotron powder X-ray diffraction is used to investigate the compression of two high pressure polymorphs of CrSb2. The first is the CuAl2-type polymorph with an eight-fold coordinated Cr, which can be quenched to ambient conditions from high-pressure high-temperature conditions. The second is the recently discovered MoP2-type polymorph, which is induced by compression at room temperature, with a seven-fold coordinated Cr. Here, the assigned structure is unambiguously confirmed by solving it from single-crystal X-ray diffraction. Furthermore, the electrical properties of the MoP2-type polymorph were investigated theoretically and the resistance calculations under pressure were accompanied by resistance measurements under high pressure on a single crystal of CrSb2. The calculated electronic band structure for the MoP2-type phase is discussed and we show that the polymorph is semimetallic and possesses type-I Weyl points. No further phase transitions were observed for the CuAl2-type structure up to 50 GPa and 40 GPa for the MoP2-type structure. Even though the CuAl2-phase has the highest coordination number of Cr, it was found to be less compressible than the MoP2-phase having a seven-fold coordinated Cr, which was attributed to the longer Cr-Sb distance in the CuAl2-type phase. The discovery of a type-I Weyl semimetallic phase in CrSb2 opens up for discovering other Weyl semimetals in the transition metal di-pnictides under high pressure.
2024
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC - Sede Secondaria Milano - Via C. Golgi
Crystal binding and equation of state
Electronic band structure
High pressure
Phase transitions
X-ray diffraction
File in questo prodotto:
File Dimensione Formato  
2024_JAlCom_1003_175457_CrSb2_Weyl.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact