The antioxidant activity of 3,9-dimethoxy-4-prenylpterocarpan (bitucarpin A) and 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C) is supposed to be related to their copper coordination ability. Therefore several complexes with Cu2+ of low-energy conformers of these two prenylated pterocarpans, whose conformational landscape was the subject of a prior B3LYP/6-31G* study (Alagona, Ghio, Monti Phys. Chem. Chem. Phys. 2004, 6, 2849), have been taken into account at the same computational level, with the metal ion described by effective core potentials in the LanL2DZ valence basis set. Their metal ion affinity (MIA) values have been determined and compared with the results obtained earlier with the same methods for the preferred binding sites of plicatin B, a prenylchalcone that can exist in E and Z configurations as well as in tautomeric forms. The stability order of the metalated species at the various coordination sites strongly depends on their position and nature. The spin density of the cation upon ligand coordination becomes vanishingly small, whereas the ligand spin density approaches 1. Thus the ligand is oxidized to a radical cation (Ligand•+), while Cu(II) is reduced to Cu(I). A very favorable MIA is obtained in vacuo when Cu2+ is chelated between the prenyl and O lone pair moieties for both pterocarpans (MIA ) 370 and 380 kcal/mol for bitucarpin A and erybraedin C, respectively). High affinity values are found also when the cation is sequestered within the two end groups (prenyl À density and D ring) in the Ot configuration (MIA ) 371 and 373 kcal/mol for bitucarpin A and erybraedin C, respectively). In aqueous solution, the solvent effect dampens the free energy differences and reduces the MIA especially when the ion is remarkably exposed to the solvent. Conversely, when Cu2+ is sequestered, the MIA decrease in solution is limited (MIA ) 327 and 360 kcal/mol for bitucarpin A and erybraedin C, respectively). The solvent effect is significantly larger in plicatin B, where the MIA is lowered by 80 to 140 kcal/mol, probably because (a) the screening ability of the substituted phenolic ring is lower and (b) the positive charge on the ligand is less efficiently delocalized than in the four fused ring system of pterocarpans.

Antioxidant properties of pterocarpans through their copper(II) coordination ability. A DFT study in vacuo and in aqueous solution (PCM)

Alagona G;Ghio C
2009

Abstract

The antioxidant activity of 3,9-dimethoxy-4-prenylpterocarpan (bitucarpin A) and 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C) is supposed to be related to their copper coordination ability. Therefore several complexes with Cu2+ of low-energy conformers of these two prenylated pterocarpans, whose conformational landscape was the subject of a prior B3LYP/6-31G* study (Alagona, Ghio, Monti Phys. Chem. Chem. Phys. 2004, 6, 2849), have been taken into account at the same computational level, with the metal ion described by effective core potentials in the LanL2DZ valence basis set. Their metal ion affinity (MIA) values have been determined and compared with the results obtained earlier with the same methods for the preferred binding sites of plicatin B, a prenylchalcone that can exist in E and Z configurations as well as in tautomeric forms. The stability order of the metalated species at the various coordination sites strongly depends on their position and nature. The spin density of the cation upon ligand coordination becomes vanishingly small, whereas the ligand spin density approaches 1. Thus the ligand is oxidized to a radical cation (Ligand•+), while Cu(II) is reduced to Cu(I). A very favorable MIA is obtained in vacuo when Cu2+ is chelated between the prenyl and O lone pair moieties for both pterocarpans (MIA ) 370 and 380 kcal/mol for bitucarpin A and erybraedin C, respectively). High affinity values are found also when the cation is sequestered within the two end groups (prenyl À density and D ring) in the Ot configuration (MIA ) 371 and 373 kcal/mol for bitucarpin A and erybraedin C, respectively). In aqueous solution, the solvent effect dampens the free energy differences and reduces the MIA especially when the ion is remarkably exposed to the solvent. Conversely, when Cu2+ is sequestered, the MIA decrease in solution is limited (MIA ) 327 and 360 kcal/mol for bitucarpin A and erybraedin C, respectively). The solvent effect is significantly larger in plicatin B, where the MIA is lowered by 80 to 140 kcal/mol, probably because (a) the screening ability of the substituted phenolic ring is lower and (b) the positive charge on the ligand is less efficiently delocalized than in the four fused ring system of pterocarpans.
2009
Istituto per i Processi Chimico-Fisici - IPCF
metal ion affinity
IEF-PCM
spin density
BSSE
B3LYP/6-31G*/LanL2DZ
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact