Platinum doped oxides with extremely low utilization of noble metal and excellent catalytic activity have gained attention in high-temperature electrochemical cells. However, platinum ions tend to be reduced in reducing atmospheres, resulting in the catalyst deactivation. In this work, lanthanum is introduced into Pt-CeO2, which aims to deal with the above problem and provides an approach to promote Pt-CeO2 based catalysts for intermediate temperature solid oxide fuel cells. In specific, lanthanum doped Pt-CeO2 catalysts are prepared and infiltrated into the anode. The results show the highest peak power density with 10 mol% lanthanum doped Pt-CeO2 among all samples. In-situ ambient pressure X-ray photoemission spectroscopy investigation reveals that the reducibility of CeO2 can be tailored by lanthanum dopants, which leads to exceptional stability of active Pt2+ in reducing atmospheres. Our results foster the development of more stable and inexpensive Pt-CeO2 for intermediate temperature solid oxide fuel cells.

Engineering lanthanum into Pt doped CeO2 for Intermediate temperature solid oxide fuel cells

Aruta, Carmela;Yang, Nan
2024

Abstract

Platinum doped oxides with extremely low utilization of noble metal and excellent catalytic activity have gained attention in high-temperature electrochemical cells. However, platinum ions tend to be reduced in reducing atmospheres, resulting in the catalyst deactivation. In this work, lanthanum is introduced into Pt-CeO2, which aims to deal with the above problem and provides an approach to promote Pt-CeO2 based catalysts for intermediate temperature solid oxide fuel cells. In specific, lanthanum doped Pt-CeO2 catalysts are prepared and infiltrated into the anode. The results show the highest peak power density with 10 mol% lanthanum doped Pt-CeO2 among all samples. In-situ ambient pressure X-ray photoemission spectroscopy investigation reveals that the reducibility of CeO2 can be tailored by lanthanum dopants, which leads to exceptional stability of active Pt2+ in reducing atmospheres. Our results foster the development of more stable and inexpensive Pt-CeO2 for intermediate temperature solid oxide fuel cells.
2024
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Roma
Ambient pressure X-ray photoemission spectroscopy
Anode catalyst
Lanthanum doping
Platinum doped cerium oxide
Solid oxide fuel cells
File in questo prodotto:
File Dimensione Formato  
JEuropeanChemSoc_Lan_2024.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact