To detect contaminants accidentally included in packaged foods, food industries use an array of systems ranging from metal detectors to X-ray imagers. Low density plastic or glass contaminants, however, are not easily detected with standard methods. If the dielectric contrast between the packaged food and these contaminants in the microwave spectrum is sensible, Microwave Sensing (MWS) can be used as a contactless detection method, which is particularly useful when the food is already packaged. In this paper we propose using MWS combined with Machine Learning (ML). In particular, we report on experiments we did with packaged cocoa-hazelnut spread and show the accuracy of our approach. We also present an FPGA acceleration that runs the ML processing in real-time so as to keep up with the throughput of a production line.

A Machine-Learning Based Microwave Sensing Approach to Food Contaminant Detection

Urbinati, Luca
Primo
;
2020

Abstract

To detect contaminants accidentally included in packaged foods, food industries use an array of systems ranging from metal detectors to X-ray imagers. Low density plastic or glass contaminants, however, are not easily detected with standard methods. If the dielectric contrast between the packaged food and these contaminants in the microwave spectrum is sensible, Microwave Sensing (MWS) can be used as a contactless detection method, which is particularly useful when the food is already packaged. In this paper we propose using MWS combined with Machine Learning (ML). In particular, we report on experiments we did with packaged cocoa-hazelnut spread and show the accuracy of our approach. We also present an FPGA acceleration that runs the ML processing in real-time so as to keep up with the throughput of a production line.
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-7281-3320-1
Microwave imaging
Microwave theory and techniques
Support vector machines
Pollution measurement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact