In Deep Neural Networks (DNN), the depth-wise separable convolution has often replaced the standard 2D convolution having much fewer parameters and operations. Another common technique to squeeze DNNs is heterogeneous quantization, which uses a different bitwidth for each layer. In this context we propose for the first time a novel Reconfigurable Depth-wise convolution Module (RDM), which uses multipliers that can be reconfigured to support 1, 2 or 4 operations at the same time at increasingly lower precision of the operands. We leveraged High Level Synthesis to produce five RDM variants with different channels parallelism to cover a wide range of DNNs. The comparisons with a non-configurable Standard Depth-wise convolution module (SDM) on a CMOS FDSOI 28-nm technology show a significant latency reduction for a given silicon area for the low-precision configurations.

A Reconfigurable Depth-Wise Convolution Module for Heterogeneously Quantized DNNs

Urbinati, Luca
Primo
;
2022

Abstract

In Deep Neural Networks (DNN), the depth-wise separable convolution has often replaced the standard 2D convolution having much fewer parameters and operations. Another common technique to squeeze DNNs is heterogeneous quantization, which uses a different bitwidth for each layer. In this context we propose for the first time a novel Reconfigurable Depth-wise convolution Module (RDM), which uses multipliers that can be reconfigured to support 1, 2 or 4 operations at the same time at increasingly lower precision of the operands. We leveraged High Level Synthesis to produce five RDM variants with different channels parallelism to cover a wide range of DNNs. The comparisons with a non-configurable Standard Depth-wise convolution module (SDM) on a CMOS FDSOI 28-nm technology show a significant latency reduction for a given silicon area for the low-precision configurations.
2022
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-6654-8485-5
Reconfigurable hardware
Mixed-Precision Quantization
Deep Neural Networks (DNN)
Depth-wise Convolution
Heterogeneous Quantization
Hardware Accelerator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515846
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact