Mixed-precision quantization (MPQ) is gaining momentum in academia and industry as a way to improve the trade-off between accuracy and latency of Deep Neural Networks (DNNs) in edge applications. MPQ requires dedicated hardware to support different bit-widths. One approach uses Precision-Scalable MAC units (PSMACs) based on multipliers operating in Sum-Together (ST) mode. These can be configured to compute N = 1, 2, 4 multiplications/dot-products in parallel with operands at 16/N bits. We contribute to the State of the Art (SoA) in three directions: we compare for the first time the SoA ST multipliers architectures in performance, power and area; compared to previous work, we contribute to the portfolio of ST-based accelerators proposing three designs for the most common DNN algorithms: 2D-Convolution, Depth-wise Convolution and Fully-Connected; we show how these accelerators can be obtained with a High-Level Synthesis (HLS) flow. In particular, we perform a design-space exploration (DSE) in area, latency, power, varying many knobs, including PSMAC units parallelism, clock frequency and ST multipliers type. From the DSE on a 28-nm technology we observe that both at multiplier level and at accelerator level there is no one-fits-all solution for each possible scenario. Our findings allow accelerators’ designers to choose, out of a rich variety, the best combination of ST multiplier and HLS knobs depending on the target, either high performance, low area, or low power.

Design-Space Exploration of Mixed-precision DNN Accelerators based on Sum-Together Multipliers

Urbinati, Luca
;
2023

Abstract

Mixed-precision quantization (MPQ) is gaining momentum in academia and industry as a way to improve the trade-off between accuracy and latency of Deep Neural Networks (DNNs) in edge applications. MPQ requires dedicated hardware to support different bit-widths. One approach uses Precision-Scalable MAC units (PSMACs) based on multipliers operating in Sum-Together (ST) mode. These can be configured to compute N = 1, 2, 4 multiplications/dot-products in parallel with operands at 16/N bits. We contribute to the State of the Art (SoA) in three directions: we compare for the first time the SoA ST multipliers architectures in performance, power and area; compared to previous work, we contribute to the portfolio of ST-based accelerators proposing three designs for the most common DNN algorithms: 2D-Convolution, Depth-wise Convolution and Fully-Connected; we show how these accelerators can be obtained with a High-Level Synthesis (HLS) flow. In particular, we perform a design-space exploration (DSE) in area, latency, power, varying many knobs, including PSMAC units parallelism, clock frequency and ST multipliers type. From the DSE on a 28-nm technology we observe that both at multiplier level and at accelerator level there is no one-fits-all solution for each possible scenario. Our findings allow accelerators’ designers to choose, out of a rich variety, the best combination of ST multiplier and HLS knobs depending on the target, either high performance, low area, or low power.
2023
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
979-8-3503-0320-9
Deep learning
Quantization (signal)
Convolution
Neural networks
Variable-Precision Multiplier
Mixed-Precision DNN Accelerators
High-Level Synthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact